Acknowledgement
본 논문은 2022년 한국 연구재단의 기초연구실사업(과제번호: 2020R1A4A3079595)의 일환으로 수행된 연구임을 밝히며 이에 감사를 드립니다.
In this paper, experiments were conducted on signal amplification of polymer capsules for application to Ground Penetrating Radar so as to enable real-time monitoring of polymer capsules inside concrete using the Morphology Dependent Resonance phenomenon. A TEM CELL and a vector network analyzer were used to analyze the difference in resonance frequency depending on the material of the sphere and the presence or absence of fracture. In order to manufacture a capsule of a size that can be measured using millimeter waves used in GPR, we manufactured a capsule with a 3D printer and analyzed the effects of the presence or absence of coating and the size of the capsule on the resonance frequency. Resonant frequency or signal amplification is more affected by diameter than coating. The capsule showing the highest amplification is the resin-coated 50 mm diameter capsule with a 316-fold increase and the lowest capsule is the uncoated 10 mm diameter capsule with a signal amplification of 11.9 times. These results demonstrate the potential of GPR to measure the position and state of self-healing capsules, which are small-sized polymers, in real time using millimeter waves.
본 논문은 2022년 한국 연구재단의 기초연구실사업(과제번호: 2020R1A4A3079595)의 일환으로 수행된 연구임을 밝히며 이에 감사를 드립니다.