Acknowledgement
이 논문은 2022 년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임. (No.2021-0-00087, SD/HD 급 저화질 미디어의 고품질 변환 기술 개발).
최근 딥러닝은 다양한 컴퓨터 비전에 적용되어 높은 성능을 제공하고 있고 이에 따라 중간 프레임을 생성하는 비디오 프레임 보간 기법에도 딥러닝이 적용되고 있다. 많은 딥러닝 기반의 비디오 프레임 보간 기법은 크게 옵티컬 플로우를 추정하는 플로우 추정 네트워크와 합성 네트워크로 구성되며 본 논문에서는 합성 네트워크 부분의 성능향상을 위한 네트워크에 대하여 다룬다. 합성 네트워크에 주로 사용되는 UNet 구조와 GridNet 구조의 장단점과 네트워크에 따른 보간 결과의 차이에 대해서 알아보고 영상 복원에서 제안된 NAFNet 을 비디오 보간 기법에 맞게 변형시켜 합성 네트워크에 적용한 보간 결과의 차이를 보였다. 실험결과는 기존 네트워크 대비 Vimeo90K 데이터셋에 대하여 PSNR 값이 0.63dB 개선됨을 보여준다.
이 논문은 2022 년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임. (No.2021-0-00087, SD/HD 급 저화질 미디어의 고품질 변환 기술 개발).