Lossless Image Compression Based on Deep Learning

딥 러닝 기반의 무손실 영상압축 방법

  • Rhee, Hochang (Department of ECE, INMC, Seoul National University) ;
  • Cho, Nam Ik (Department of ECE, INMC, Seoul National University)
  • 이호창 (서울대학교 뉴미디어통신공동연구소 정보신호처리연구실) ;
  • 조남익 (서울대학교 뉴미디어통신공동연구소 정보신호처리연구실)
  • Published : 2022.06.20

Abstract

최근 딥러닝 방법의 발전하면서 영상처리 및 컴퓨터 비전의 다양한 분야에서 딥러닝 기반의 알고리즘들이 그 이전의 방법들에 비하여 큰 성능 향상을 보이고 있다. 손실 영상 압축의 경우 최근 encoder-decoder 형태의 네트웍이 영상 압축에서 사용되는 transform을 대체하고 있고, transform 결과들의 엔트로피 코딩을 위한 추가적인 encoder-decoder 네트웍을 사용하여 HEVC 수준에 버금가는 성능을 내고 있다. 무손실 압축의 경우에도 매 픽셀 예측을 CNN으로 수행하는 경우, 기존의 예측방법들에 비하여 예측성능이 크게 향상되어 JPEG-2000 Lossless, FLIF, JEPG-XL 등의 딥러닝을 사용하지 않는 방법들에 비하여 우수한 성능을 내는 것으로 보고되고 있다. 그러나 모든 픽셀에 대하여 예측값을 CNN을 통하여 계산하는 방법은, 영상의 픽셀 수 만큼 CNN을 수행해야 하므로 HD 크기 영상에 대하여 지금까지 알려진 가장 빠른 방법이 한 시간 이상 소요되는 등 비현실적인 것으로 알려져 있다. 따라서 최근에는 성능은 이보다 떨어지지만 속도를 현실적으로 줄인 방법들이 제안되고 있다. 이러한 방법들은 초기에는 FLIF나 JPEG-XL에 비하여 성능이 떨어져서, GPU를 사용하면서도 기존의 방법보다 좋지 않은 성능을 보인다는 면에서 여전히 비현실적이었다. 최근에는 신호의 특성을 더 잘 활용하는 방법들이 제안되면서 매 픽셀마다 CNN을 수행하는 방법보다는 성능이 떨어지지만, 짧은 시간 내에 FLIF나 JPEG-XL보다는 좋은 성능을 내는 현실적인 방법들이 제안되었다. 본 연구에서는 이러한 최근의 몇 가지 방법들을 살펴보고 이들보다 성능을 더 좋게 할 수 있는 보조적인 방법들과 raw image에 대한 성능을 평가한다.

Keywords

Acknowledgement

This research was financially supported by the Ministry of Trade, Industry, and Energy (MOTIE), Korea, under the "Regional Specialized Industry Development Program (R&D, P0002072)" supervised by the Korea Institute for Advancement of Technology (KIAT)P0002072 and BK21 FOURprogram of the Education and Research Program for Future ICT Pioneers, Seoul National University in 2022.