Acknowledgement
이 논문은 2021 년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(NRF-2018R1D1A1B07043220)
본 논문에서는 선택적 시점에서의 2D 포즈 추정(pose estimation) 결과를 정합 하여 정확도 높은 3D 스켈레톤(skeleton)을 만들어 낸다. 여러 프레임의 3D 데이터를 10 도 간격으로 36 방향에서 투영한 뒤, 2D 포즈 추정 결과 신뢰도가 높은 시점에서의 결과만을 선별하여 3 차원으로 정합 한다. 이때 사용하는 시점의 개수를 달리하며 정확도에 미치는 영향을 분석하여 실험적으로 정확도가 높은 최소의 시점 개수를 정하였다. 또한, 정합 한 3D 뼈대를 모션 캡쳐(motion capture) 센서와 비교하여 제안하는 알고리즘에 의해 3D 포즈 추정의 정확도가 향상되는 것을 확인했다.
이 논문은 2021 년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(NRF-2018R1D1A1B07043220)