Luminance-adaptive Image Stitching by Using Deep learning based Feature Detection and Matching

딥러닝 기반 특징점 추출 및 매칭 기술을 활용한 밝기 적응형 영상 스티칭

  • Published : 2022.06.20

Abstract

최근 가상 현실(Virtual Reality), 파노라마(Panorama) 영상 등에 관한 관심과 수요가 증가함에 따라 고해상도 영상을 얻기 위한 영상 스티칭(Image Stitching)에 관한 연구가 활발하게 진행되고 있다. 영상 스티칭은 다수의 영상을 하나의 영상으로 합성해 카메라의 좁은 시야각 문제를 해결함으로써 사용자에게 몰입감과 현장감을 제공할 수 있는 기술이다. 영상 스티칭에 있어 특징점 추출 및 매칭 과정의 정확도는 스티칭 영상의 품질을 결정짓는 핵심적인 요소이지만, 기존의 특징점 추출 및 매칭 방법은 밝기가 어둡고 선명도가 낮은 영상의 스티칭에서 정확도가 저하될 수 있고 생성된 스티칭 영상의 품질 또한 저하될 수 있다는 제한 사항이 있다. 이에 본 논문에서는 앞선 제한적 영상에 대하여 특징점 추출 및 매칭의 정확도를 높여 스티칭 영상의 품질을 높이기 위하여 SuperPoint와 SuperGLUE를 활용한 입력 영상의 밝기 적응형 영상 스티칭 방법을 제안하고자 한다.

Keywords