과제정보
이 논문은 2021 년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 ICT R&D 지원을 받아 수행된 연구임. (No.2021-0-00917, 식물 성장 영상 정보를 이용한 식물공장 피노믹스 시스템)
본 논문은 인식이 어려운 조명 환경에도 강인한 seven-segment 문자 인식을 위해서, 영상 내에 다양한 조명 연출이 가능하도록 합성 데이터 셋을 생성하고 학습할 수 있는 OCR 방법을 제안한다. 기존 연구에서는 deblurring 과 같이 영상 이미지의 해상도를 높여 문자 인식의 정확도를 향상시키는 것에 초점을 두었으나, 여러 조명 환경에 대비할 수 있는 OCR 관련 연구들은 부족하다. 이를 해결하기 위해 본 논문에서는 문자가 포함된 자연스러운 배경 영상에, seven-segment 문자를 합성시킨 후 relighting 을 적용함으로써 실제 환경과 유사한 장면을 연출해 새로운 합성 데이터 셋을 생성한다. 그리고 생성된 데이터 셋을 딥러닝 기반 학습시켜 다양한 조명에도 강인한 문자 인식기를 만들고자 한다. 합성 데이터 셋의 사용여부와 일반적인 데이터 augmentation 기법의 사용 여부를 비교하여, 본 논문에서 제안한 방법의 효과를 확인할 수 있었다. 이를 통해서 seven-segment 문자 인식 뿐만 아니라, 다양한 문자에 대해서도 적용될 수 있는 초석이 될 것으로 기대된다.
이 논문은 2021 년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 ICT R&D 지원을 받아 수행된 연구임. (No.2021-0-00917, 식물 성장 영상 정보를 이용한 식물공장 피노믹스 시스템)