Deep Learning-based Phase-only Hologram Generation

심층 학습 기반 위상 홀로그램 생성

  • Published : 2022.06.20

Abstract

본 논문에서는 기존 이미지를 통해 위상 홀로그램을 생성하는 네트워크를 학습 및 최적화하여, 기존에 사용하는 알고리즘 방식인 GS 알고리즘(Gerchberg-Saxton algorithm)을 대체하는 것을 목표로 한다. GS는 반복 최적화 기법으로 한 장의 이미지에서 위상 홀로그램을 생성하는데 많은 시간이 걸리지만, 심층 학습 기반으로 학습된 모델을 통해 위상 홀로그램을 생성할 경우, 반복 최적화 과정 없이 짧은 시간 안에 위상 홀로그램을 생성할 수 있다. GS와 심층 학습 기반으로 각각 생성한 위상 홀로그램을 ASM(Angular Spectrum Method)을 통해 수치적으로 재복원하여 PSNR로 원본 이미지와 비교한 결과, 심층 학습 기반으로 생성한 위상 홀로그램에서 더 좋은 화질의 이미지를 짧은 시간 안에 얻을 수 있었다.

Keywords

Acknowledgement

이 논문은 삼성전자미래기술육성센터의 지원을 받아 수행된 연구임 (과제번호 SRFC-IT2202-03)