Acknowledgement
이 논문은 2022년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임(IITP-2022-00155227, 문맥정보를 이용한 딥러닝 기반의 의료 진단에 활용 가능한 ICT-BIO 융합 기술 개발/ IITP-2022-0-00899, 멀티 모달 센서가 장착된 스마트 인솔을 이용한 보행 패턴 분석 시스템 개발)
본 논문에서는 축형 척추관절염으로 발전할 수 있는 천장관절염 환자들을 진단하기 위해 장골의 관심영역을 자동 생성할 수 있는 세그멘테이션 방법을 제안한다. 다양한 MRI 기기로부터 얻은 천장관절염 환자의 영상에서 장골의 GT(Ground Truth)를 생성하였으며, 대장 용종 검출을 위한 세그멘테이션 모델인 PraNet과 지역 특징 간의 표현 능력을 활용할 수 있는 Position Attention Module을 사용하여 유의미한 성능 향상을 보여주었다.
이 논문은 2022년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임(IITP-2022-00155227, 문맥정보를 이용한 딥러닝 기반의 의료 진단에 활용 가능한 ICT-BIO 융합 기술 개발/ IITP-2022-0-00899, 멀티 모달 센서가 장착된 스마트 인솔을 이용한 보행 패턴 분석 시스템 개발)