Post-Training with Hierarchical Masked Language Modeling

계층적 마스크 모델링을 이용한 언어 모델의 사후 학습

  • Published : 2022.10.18

Abstract

최근 자연어 이해 및 생성에 있어서 사전학습 기반의 언어 모델이 널리 사용되고 있다. BERT, roBERTa 등의 모델이 있으며, 마스크 언어 모델링을 주요 과제로 하여 사전 학습을 한다. 하지만 MLM은 문법적인 정보를 활용하지 못하는 단점이 있다. 단 순히 무작위로 마스크를 씌우고 맞추기 때문이다. 따라서 본 연구에서는 입력 문장의 문법적 정보를 활용하는 방법을 소개하고, 이를 기반으로 사후 학습을 하여 그 효과를 확인해 본다. 공개된 사전학습 모델과 사후학습 모델을 한국어를 위한 벤치마크 데이터셋 KLUE에 대하여 조정학습하고 그 결과를 살펴본다.

Keywords

Acknowledgement

이 논문은 2021년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임(No.1711139527, 빅데이터 인과 분석을 위한 복잡계 기반 추론 인공지능(REX) 개발 및 실증)