Acknowledgement
이 논문은 2020년도 정부(과학기술정보통신부)의 재원으로 정보통신기술기획평가원의 지원을 받아 수행된 연구임 (No. 2020-0-00368, 뉴럴-심볼릭(neural-symbolic) 모델의 지식 학습 및 추론 기술 개발). 이 논문은 2021년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(NRF-2021R1A6A1A03045425).
일반 상식 기반의 지식 그래프는 대규모 코퍼스에 포함되어 있는 일반 상식을 그래프로 표현하여, 자연어 처리의 하위 작업들에 적용할 수 있도록 하는 구조화된 지식 표현 방법이다. 현재 가장 잘 알려진 일반 상식 기반의 지식 그래프로는 ATOMIC [1]이 있다. 하지만 한국어를 주요 언어로 하는 일반 상식 기반의 지식 그래프에 대한 연구는 아직 활발하지 않다. 따라서 본 연구에서는 기존에 존재하는 영어 기반의 지식 그래프와 일반 상식 기반의 한국어 데이터셋을 활용해서 한국어 일반 상식 기반 지식 그래프를 구축하는 방법론을 제시한다. 또한, 제작한 지식 그래프를 평가하여 구축하는 방법론에 대한 타당성을 검증한다.
이 논문은 2020년도 정부(과학기술정보통신부)의 재원으로 정보통신기술기획평가원의 지원을 받아 수행된 연구임 (No. 2020-0-00368, 뉴럴-심볼릭(neural-symbolic) 모델의 지식 학습 및 추론 기술 개발). 이 논문은 2021년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(NRF-2021R1A6A1A03045425).