Acknowledgement
이 논문은 2021년도 정부(교육부)의 재원으로 한국연구재단 기초연구사업의 지원을 받아 수행된 연구임(No. 2021R1I1A3059545).
최근 한국어 언어 모델이나 단어 벡터 생성 등에서는 효과적인 토큰을 만들기 위해 품사 태그 없이 형태소 열만을 사용하고 있다. 본 논문에서는 입력 문장에 대해 품사 태그열 생성없이 형태소 열만을 직접 출력하는 효율적인 모델을 제안한다. 특히, 자연어처리에서 적합한 트랜스포머를 활용하기 위해, 입력 음절과 원형 복원된 형태소 조각이 1:1로 대응되는 새로운 형태소 태깅 방법을 제안한다. 세종 품사 부착 말뭉치를 대상으로 평가해 본 결과 공개 배포되어 있는 기존 형태소 분석 모델들보다 형태소 단위 F1 기준으로 약 7%에서 14% 포인트 높은 성능을 보였다.
이 논문은 2021년도 정부(교육부)의 재원으로 한국연구재단 기초연구사업의 지원을 받아 수행된 연구임(No. 2021R1I1A3059545).