Coreference Resolution Pipeline Model using Mention Boundaries and Mention Pairs in Dialogues

대화 데이터셋에서 멘션 경계와 멘션 쌍을 이용한 상호참조해결 파이프라인 모델

  • Damrin Kim (Konkuk University, Department of Artificial Intelligence) ;
  • Seongsik Park (Konkuk University, Department of Artificial Intelligence) ;
  • Harksoo Kim (Konkuk University, Department of Artificial Intelligence)
  • 김담린 (건국대학교 인공지능학과) ;
  • 박성식 (건국대학교 인공지능학과) ;
  • 김학수 (건국대학교 인공지능학과)
  • Published : 2022.10.18

Abstract

상호참조해결은 주어진 문서에서 멘션을 추출하고 동일한 개체의 멘션들을 군집화하는 작업이다. 기존 상호참조해결 연구의 멘션탐지 단계에서 진행한 가지치기는 모델이 계산한 점수를 바탕으로 순위화하여 정해진 비율의 멘션만을 상호참조해결에 사용하기 때문에 잘못 예측된 멘션을 입력하거나 정답 멘션을 제거할 가능성이 높다. 또한 멘션 탐지와 상호참조해결을 종단간 모델로 진행하여 학습 시간이 오래 걸리고 모델 복잡도가 높은 문제가 존재한다. 따라서 본 논문에서는 상호참조해결을 2단계 파이프라인 모델로 진행한다. 첫번째 멘션 탐지 단계에서 후보 단어 범위의 점수를 계산하여 멘션을 예측한다. 두번째 상호참조해결 단계에서는 멘션 탐지 단계에서 예측된 멘션을 그대로 이용해서 서로 상호참조 관계인 멘션 쌍을 예측한다. 실험 결과, 2단계 학습 방법을 통해 학습 시간을 단축하고 모델 복잡도를 축소하면서 종단간 모델과 유사한 성능을 유지하였다. 상호참조해결은 Light에서 68.27%, AMI에서 48.87%, Persuasion에서 69.06%, Switchboard에서 60.99%의 성능을 보였다.

Keywords

Acknowledgement

이 논문은 2020년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임 (No. 2013-0-00131, (엑소브레인-총괄/1세부) 휴먼 지식증강 서비스를 위한 지능진화형 WiseQA 플랫폼 기술 개발). 또한 이 논문은 2022년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임 (No. 2022-0-00369, (4세부) 전문지식 대상 판단결과의 이유/근거를 설명가능한 전문가 의사결정 지원 인공지능 기술개발)