Improving passage retrieval via negative sampling from semantic feature space

의미론적 feature 공간상에서의 negative sampling을 통한 검색 성능 개선

  • Published : 2022.10.18

Abstract

최근 검색 태스크에서는 좋은 negative sample을 얻는 방법론들이 적용되어 큰 성능 향상을 이뤘다. 하지만 좋은 negative sample 대부분의 방법들은 큰 계산 비용이 든다. 따라서 본 논문에서는 계산 비용이 적고 효과적인 negative sample을 얻기 위해 Mixed Gaussian Recurrent Chain (MGRC) sampling을 사용하여 feature 공간상에서 의미론적으로 유사한 feature를 얻고 이를 negative sample로 활용하여 기존 baseline 모델보다 좋은 성능을 얻었다.

Keywords