Annual Conference on Human and Language Technology (한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리))
- 2022.10a
- /
- Pages.109-114
- /
- 2022
- /
- 2005-3053(pISSN)
Natural question generation based on consistency between generated questions and answers
생성된 질의응답 간 일관성을 이용한 자연어 질의 생성
- Jaehong Lee (NAVER Corporation) ;
- Hwiyeol Jo (NAVER Corporation) ;
- Sookyo In (NAVER Corporation) ;
- Sungju Kim (NAVER Corporation) ;
- Kiyoon Moon (NAVER Corporation) ;
- Taehong Min (NAVER Corporation) ;
- Kyungduk Kim (NAVER Corporation)
- Published : 2022.10.18
Abstract
질의 생성 모델은 스마트 스피커, 챗봇, QA 시스템, 기계 독해 등 다양한 서비스에 사용되고 있다. 모델을 다양한 서비스에 잘 적용하기 위해서는 사용자들의 실제 질의 특성을 반영한 자연스러운 질의를 만드는 것이 중요하다. 본 논문에서는 사용자 질의 특성을 반영한 간결하고 자연스러운 질의 자동 생성 모델을 소개한다. 제안 모델은 topic 키워드를 통해 모델에게 생성 자유도를 주었으며, 키워드형 질의→자연어 질의→응답으로 연결되는 chain-of-thought 형태의 다중 출력 구조를 통해 인과관계를 고려한 결과를 만들도록 했다. 최종적으로 MRC 필터링과 일관성 필터링을 통해 고품질 질의를 선별했다. 베이스라인 모델과 비교해 제안 모델은 질의의 유효성을 크게 높일 수 있었다.