최근 사전학습 언어모델에 내재된 지식을 최대한으로 활용하고자 태스크에 대한 설명을 입력으로 주는 manual prompt tuning 방법과 자연어 대신 학습가능한 파라미터로 태스크에 대한 이해를 돕는 soft prompt tuning 방법론이 자연어처리 분야에서 활발히 연구가 진행되고 있다. 이에 본 연구에서는 페르소나 대화 생성 태스크에서 encoder-decoder 구조 기반의 사전학습 언어모델 BART를 활용하여 manual prompt tuning 및 soft prompt tuning 방법을 고안하고, 파인튜닝과의 성능을 비교한다. 전체 학습 데이터에 대한 실험 뿐 아니라, few-shot 세팅에서의 성능을 확인한다.
이 논문은 2021년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(NRF-2021R1A6A1A03045425). 본 연구는 과학기술정보통신부 및 정보통신기술기획평가원의 대학ICT연구센터지원사업의 연구결과로 수행되었음 (IITP-2022-2018-0-01405). 이 논문은 2022년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임(No.2022-0-00887, AI기반 음성 분석을 통한 인터랙티브 도서추천 단말 개발).