The improvement of Korean Standard Classification of Diseases prediction model by applying the hierarchical classification system

계층적 분류체계를 적용한 한국질병사인분류 예측 모델의 개선

  • Geunyeong Jeong (Konkuk University Department of Artificial Intelligence) ;
  • Joosang Lee (Konkuk University Department of Artificial Intelligence) ;
  • Juoh Sun (Konkuk University Department of Artificial Intelligence) ;
  • Seokwon, Jeong (Kangwon University) ;
  • Hyunjin Shin (Konkuk University School of Medicine) ;
  • Harksoo Kim (Konkuk University Department of Artificial Intelligence)
  • Published : 2022.10.18

Abstract

한국표준질병사인분류(KCD)는 사람의 질병과 사망 원인을 유사성에 따라 체계적으로 유형화한 분류체계이다. KCD는 계층적 분류체계로 구성되어 있어 분류마다 연관성이 존재하지만, 일반적인 텍스트 분류 모델은 각각의 분류를 독립적으로 예측하기 때문에 계층적 정보를 반영하는 데 한계가 있다. 본 논문은 계층적 분류체계를 적용한 KCD 예측 모델을 제안한다. 제안 방법의 효과를 입증하기 위해 비교 실험을 진행한 결과 F1-score 기준 최대 0.5%p의 성능 향상을 확인할 수 있었다. 특히 비교 모델이 잘 예측하지 못했던 저빈도의 KCD에 대해서 제안 모델은 F1-score 기준 최대 1.1%p의 성능이 향상되었다.

Keywords

Acknowledgement

이 논문은 2022년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임. (No. 2022-0-00369, (4세부) 전문지식 대상 판단결과의 이유/근거를 설명가능한 전문가 의사결정 지원 인공지능 기술개발) 또한 이 논문은 2020년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임. (No. 2013-0-00131, (엑소브레인-총괄/1세부) 휴먼 지식증강 서비스를 위한 지능진화형 WiseQA 플랫폼 기술 개발)