Acknowledgement
이 논문은 2022년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임 (No.2021-0-02068, 인공지능 혁신 허브 연구 개발)
본 논문에서는 중요도를 반영한 긴 회의록 요약 모델을 제안한다. 제안한 모델은 먼저 회의록을 일정 크기로 구분한 후 구분된 텍스트에 대해 중간 요약문을 생성하고 각 요약문의 중요도를 계산한다. 다음으로 생성된 중간 요약문과 중요도를 함께 사용하여 최종 요약문을 생성한다. 제안 방법은 최종 요약문을 생성할 때 중간 요약문을 다르게 반영하므로 중요한 중간 요약문에서는 핵심 내용을 중점적으로 생성하도록 한다. 실험에서 제안한 요약 모델은 BART기반 요약 모델과, 중요도를 고려하지 않는 요약 모델(SUMMN)보다 핵심 내용을 포함한 요약문을 생성하였고, 평가 데이터에 대해 ROUGE-1 기준 1.37, 0.29 향상된 성능을 보였다.
이 논문은 2022년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임 (No.2021-0-02068, 인공지능 혁신 허브 연구 개발)