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Abstract: The instantiation of spaces as a discrete entity allows users to utilize BIM models in a 

wide range of analyses. However, in practice, their utility has been limited as spaces are erroneously 

entered due to human error and often omitted entirely. Recent studies attempted to automate space 

allocation using artificial intelligence approaches. However, there has been limited success as most 

studies focused solely on the use of geometric features to distinguish spaces. In this study, in 

addition to geometric features, semantic relations between spaces and elements were modeled and 

used to improve space classification in BIM models. Graph Convolutional Networks (GCN), a deep 

learning algorithm specifically tailored for learning in graphs, was deployed to classify spaces via 

a similarity graph that represents the relationships between spaces and their surrounding elements. 

Results confirmed that accuracy (ACC) was +0.08 higher than the baseline model in which only 

geometric information was used. Most notably, GCN was able to correctly distinguish spaces with 

no apparent difference in geometry by discriminating the specific elements that were provided by 

the similarity graph. 

 

Keywords:  BIM, semantic enrichment, graph learning, semantic relational information 

1. INTRODUCTION 

Building Information Modeling (BIM) made it possible to recognize spaces represented only by 

geometric occlusal planes in 2D drawings as individual objects. The instantiation of space allows 

individual spaces to express property, and users can utilize building information in a wide range, 

such as legal review, energy analysis, and evacuation path analysis. 

However, it was challenging to ensure semantic consistency of spatial information due to errors 

and omissions by the manual BIM modeling process. In addition, since spatial information in most 

BIM models used in practice was often not entered at all, there was a problem that users had to 

manually modify and specify space labels to utilize building information. 
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 Recent studies have attempted to explore ways to automate space allocation using artificial 

intelligence (AI) algorithms, increasing the potential applicability of BIM. [1] conducted spatial 

classification using a Naive Bayes classifier, and [2] derived 82% classification accuracy by 

learning spatial geometry using a machine learning algorithm. Such existing approaches proved the 

superiority of machine learning approaches compared to rule-based approaches. However, they had 

a limitation in that they could not correctly distinguish similar spaces by focusing only on the 

geometric features.  
Since space is a semantic concept perceived by the walls, slabs, and ceilings, it is necessary to 

include relational information in the AI learning process [3]. Individual spaces often show 

similarity in the relationship between elements and adjacent spaces, so the AI model should reflect 

these characteristics by expressing the similarity of each topologically linked space in the form of 

a network graph. 

This study attempted to construct an outstanding AI model for automatic space classification by 

using graphs of semantic relations between individual BIM spaces and elements in the model 

learning process. Graph Convolutional Networks (GCN) was used for graph learning in this study. 

GCN has proven its high performance with a semi-supervised learning algorithm that classifies 

node information and neighbor node information based on weight sharing and local feature learning 

of convolution operations [4].   

The 12-story office building (BIM model) was used for GCN training. 9 highly utilized space 

types were selected for analysis, and 17 element types were used to build space-element graphs and 

learn the GCN model. In addition, to prove the effectiveness of utilizing the relational information 

in the space classification, the Multi-Layer Perceptron (MLP) was trained as geometric features of 

space and used as a baseline model to compare and analyze GCN results. 

2. RESEARCH BACKGROUND 

2.1. GRAPH CONVOLUTIONAL NETWORKS (GCN) 

GCN is a model that trains information of nodes and neighboring nodes based on weight sharing 

and local feature learning through convolution operation [4].  GCN also utilizes both labeled and 

unlabeled data for training in a semi-supervised learning method, so that high learning accuracy 

can be derived even if the amount of labeled data is insufficient. 

GCN training process is composed of an adjacency matrix representing the relationship between 

edges and a node feature matrix describing the characteristics of a node. A neural network is created 

using the learning variables and nonlinear functions of nodes in the graph and neighboring nodes.  

Error! Reference source not found. presents the training process of GCN. The adjacency 

matrix is expressed as N × N, and the node feature matrix is described as N × F, where N is the 

number of nodes and F is the number of features. The adjacency matrix and the node feature matrix 

are multiplied in the first hidden layer. At this time, only the relationship with the connection of 

the adjacent matrix is reflected in the results. In the second hidden layer, the adjacency matrix is 

multiplied once more while the relationship of the adjacency matrix is already reflected in the node 

feature matrix. That is, as the number of hidden layers increases, the relationship between each 

node is reflected more.  

As the number of layers increases, GCN has a characteristic that the over-smoothing problem 

occurs, in which the accuracy decreases as the embedding values become similar to each other. 

Therefore, this study tried to derive the optimal performance by configuring the GCN in two layers. 

As a nonlinear function, an activation function such as ReLU (Rectified Linear Unit) was used in 

the first layer. In the second layer, training was performed using softmax for space type 

classification. 
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Figure 1. Structure of GCN [4] 

 

2.2. MULTI-LAYER PERCEPTRON (MLP) 

A perceptron is a basic unit of an artificial neural network that outputs from multiple inputs to 

one result. MLP is a network composed of a combination of several perceptrons. It is an artificial 

neural network model consisting of several hidden layers along with an input layer and an output 

layer.  

In MLP, all values corresponding to the input layer are transferred to the hidden layer. Likewise, 

all values output from the hidden layer are also transferred to the output layer. An activation 

function is applied to the output result value at the hidden layer to the output layer process. Unlike 

single-layer perceptron, which can only learn linear problems, MLP can solve nonlinear problems 

and is advantageous for predicting continuous values. In addition, it is a representative technique 

of neural network algorithms and is mainly used for multi-class classification, so it was used as a 

baseline model for learning geometric features of space. 

3. RESEARCH METHODOLOGY 

3.1. DATA OVERVIEW 

This study used the 'KBIMS office building' for analysis. This building is a 12-story standard 

IFC model with LOD (Level of Detail) 300 in the detailed design phase and was provided by the 

buildingSMART Korea. The elements used in this study were initially composed of 13 IFC classes. 

However, to improve the classification performance of spaces containing specific elements when 

using relational information in the model training process, the types of elements were subdivided 

into 17 enumeration types. For example, for IfcDoor, as the shape and function were different 

according to the enumeration type, it was subdivided into ‘single, double, and door, etc.’ 
 

 presents 247 spaces of 9 types and 9,213 elements of 17 types included in this model. 
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The elements used in this study were initially composed of 13 IFC classes. However, to improve 

the classification performance of spaces containing specific elements when using relational 

information in the model training process, the types of elements were subdivided into 17 

enumeration types. For example, for IfcDoor, as the shape and function were different according 

to the enumeration type, it was subdivided into ‘single, double, and door, etc.’ 
 

Table 1.  Status of spaces and elements in the BIM model 

Space Element 

IFC class 
Enumeration 

type 

# of 

spaces 
IFC class 

Enumerati

on type 

# of 

elements 

IfcSpace 

Elevator hall 39 
IfcBeam Beam 158 

IfcBuildingElement Proxy 

Disabled 

restroom 

partition 

20 

Elevator 

vestibule 
13 

Disabled 

sign 
20 

Hallway 11 

Elevator 

door 
36 

IfcColumn Column 264 

Office room 79 

IfcCovering Covering 65 

IfcCurtainWall 
Curtain 

wall 
152 

Plant room 14 
IfcDoor 

Single door 88 

Double 

door 
87 

Restroom 20 

Door etc. 40 

IfcFlowTerminal 
Flow 

terminal 
140 

Shaft 40 
IfcFurnishingElement 

Furnishing 

element 
251 

IfcMember Member 6,559 

Stariway 25 IfcSlab Slab 303 
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IfcStairFlight Stair flight 49 

Storage 6 
IfcWall Wall 899 

IfcWindow Window 82 

Total 247 Total 9,213 

 

3.2. Data preprocessing 

The primary data for training the automatic space classification model was the geometric features 

of individual spaces. The geometric features were extracted using a rule set file mounted in the 

commercial BIM software (KBim Assess-Lite). As a result, 10 features including area, volume, 

perimeter, length, width, and height of the bounding-box, aspect ratio, surface area, number of 

boundary lines, and ax1s (area/volume) were extracted. 

3.3. Semantic relational graph extraction 

GCN requires two input values for learning, a node feature matrix and an adjacency matrix. In 

this study, the node feature matrix consisted of geometric features of individual spaces extracted in 

Section 3.2. The adjacency matrix consisted of the semantic relational information between each 

space and physically adjacent elements. The extraction process of relational information was as 

follows:  

Bounding boxes of each space were used to extract relational information between space and 

elements. Specifically, when the bounding boxes of each space and element were projected onto a 

2D plane, physical adjacency was extracted, assuming that elements were included in the space if 

the two projections overlapped (Figure). 
 

 

Figure 2. Relational information extraction 

 

The space-element adjacency matrix constructed through the above process was expressed as an 

undirected graph consisting of 11,313 nodes (space and elements) and 15,199 edges (physical 

connectivity). 

3.4. Relational graph extraction based on similarity. 
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The relational graph in Section 3.3 was a form in which space and physically adjacent elements 

were connected. However, for the GCN training, conversion into a graph form constructed as an 

edge based on the similarity between nodes was required, not a physically adjacent relationship. 

Therefore, elements adjacent to individual spaces were used as a criterion for deriving similarity, 

and the graph was reconstructed (Figure). 
 

 

Figure 3. Graph conversion from physical adjacency to similarity 

 

Jaccard similarity technique was used for measuring the similarity between spaces. The Jaccard 

similarity technique is a technique that measures similarity based on frequency through intersection 

and union between sets. Specifically, as shown in Equation (1), if n (= 𝐴 ∩ 𝐵) out of m (𝐴 ∪ 𝐵) 

elements included in an adjacent space are similar, the similarity is derived by calculating them as 

n/m (= 𝐴 ∩ 𝐵/𝐴 ∪ 𝐵). 

 

𝐽(𝐴, 𝐵) =  
|𝐴∩𝐵|

|𝐴|+|𝐵|−|𝐴∩𝐵|
                                                        (1) 

 

As a result of measuring the similarity using the Jaccard similarity technique, a graph consisting 

of 61,009 edges was constructed according to each similarity value.  

However, the number of edges compared to nodes was significantly higher, and all existing 

spaces in the BIM model were expressed as connected, which acts as a hindrance to GCN training. 

[5] removed unnecessary edges in a graph using a threshold and verified that graph performance 

was the most effective when the threshold was between 0.8 and 1.0. As a result of applying the 

same method in this study, a graph in which unnecessary edges were effectively removed when the 

threshold was 0.85 (the number of edges 4,907) was derived, and this was used for model training. 

 

3.5. Deep learning implementation 

MLP was trained using only geometric feature values, and GCN was trained using geometric 

features and similarity-based relational graphs constructed in Section 3.4. Machine learning 

libraries, Python's 'sikit-learn' and PyTorch’s 'deep graph,' were used to implement the model 

training. 

To train the two learning models (MLP, GCN), the ratio of space data collected in Section 3.1 

was divided into 6:4 and used as a train set and test set. As a result, 148 spaces were used for model 

training, and 99 spaces were used for model verification. In addition, accuracy (ACC) and 𝐹1-score 

were used to evaluate the performance of each learning model. 
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4. RESULTS 

Error! Reference source not found. presents the classification performance of the two deep 

learning models (MLP, GCN). As a result of verifying the performance of the MLP model that 

learned geometric information, ACC was 0.86, and 𝐹1-score was 0.71. The overall classification 

performance of the MLP model was confirmed to be satisfactory, but the elevator vestibule, plant 

room, and storage showed inferior classification performance compared to other spaces. In 

particular, it was confirmed that the storage was incorrectly inferred as an elevator hole and 

stairway. This was due to the lack of data, and the geometric features were not clearly distinguished 

from other spaces. 

ACC of the GCN learning model using semantic relationship information was derived as 0.95 

and  𝐹1-score was derived as 0.91. The classification performance of the GCN model with semantic 

relational information added was superior to the MLP model that learned only geometric features. 

In particular, the ACC of the elevator vestibule and storage space, which showed abysmal 

classification performance in MLP, was derived as 1.00 and 0.50 in the GCN model, respectively, 

showing relatively improved classification performance. In addition, the ACC of the hallway, plant 

room, and shaft space was slightly improved. 
 

Table 2.  Validation results for MLP and GCN 

Space 
MLP GCN Delta values 

ACC 𝑭𝟏-score ACC 𝑭𝟏-score ACC 𝑭𝟏-score 

Elevator hall 1.00 0.86 1.00 0.97 0.00 0.11 

Elevator vestibule 0.40 0.57 1.00 1.00 0.60 0.43 

Hallway 0.75 0.86 1.00 0.89 0.25 0.03 

Office room 1.00 0.97 1.00 0.97 0.00 0.00 

Plant room 0.33 0.44 0.67 0.80 0.34 0.36 

Restroom 1.00 0.94 1.00 1.00 0.00 0.06 

Shaft 0.81 0.79 0.94 0.94 0.13 0.15 

Stairway 0.90 0.95 0.90 0.95 0.00 0.00 

Storage 0.00 0.00 0.50 0.67 0.50 0.67 

Average 0.86 0.71 0.95 0.91 0.09 0.20 
  

The GCN model improved ACC by 0.09 and 𝐹1-score by 0.20 compared to the MLP model. In 

detail, it can be seen that the classification performance of a total of 5 spaces, including elevator 

vestibule, hallway, plant room, shaft, and storage, had been improved. In particular, the 

classification performance of elevator vestibule and storage spaces, including specific elements 

such as elevator doors and single doors, has dramatically improved. On the other hand, in the case 

of the hallway, plant room, and shaft spaces that do not contain elements differentiated from other 

spaces, the degree of performance improvement was relatively insignificant.  

6. CONCLUSION 

This study built an automatic space classification model for increasing the potential applicability 

of BIM. GCN, trained on geometric and relational information, was proposed to secure outstanding 

performance for space classification. As a result, the ACC of the GCN model was about 8% higher 

than the MLP model in which only geometric feature was trained. And it was confirmed that spaces 

that were difficult to distinguish only by the geometric properties of the space were classified 
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correctly. In addition, although the geometric shape was not significantly differentiated from other 

spaces, the accuracy of space classification was improved by including specific elements 

distinguished in the relational information. 

However, in the case of the hallway, plant room, and shaft spaces, there was a problem in that 

the improvement of accuracy was insignificant because the singularities in the relational 

information could not be trained adequately in GCN training. In other words, due to the lack of 

data, the spatial characteristics were not reflected in the training process, which served as a 

performance limitation of the GCN model. More data is required to learn enough about the spaces 

where the model's classification performance was weak. 

Since the approach presented in this study used the similarity of space as a medium for graph 

connection, space data of several BIM models can be learned simultaneously. That is, graphs are 

generated based on similarity, multiple BIM models can be used for deep learning without being 

limited to a single BIM model. Accordingly, future work includes improving the model's 

performance by accumulating the data from additional BIM models.  
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