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Abstract: In the construction industry, fatal accidents related to scaffolds frequently occur. To 

prevent such accidents, scaffolds should be carefully monitored for their safety status. However, 

manual observation of scaffolds is time-consuming and labor-intensive. This paper proposes a 

method that automatically analyzes the installation status of scaffold joints based on images 

acquired from a Unmanned Aerial Vehicle (UAV). Using a deep learning-based object detection 

algorithm (YOLOv5), scaffold joints and joint components are detected. Based on the detection 

result, a two-stage rule-based classifier is used to analyze the joint installation status. Experimental 

results show that joints can be classified as safe or unsafe with 98.2 % and 85.7 % F1-scores, 

respectively. These results indicate that the proposed method can effectively analyze the joint 

installation status in UAV-acquired scaffold images. 
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1. INTRODUCTION  

    According to the Korea Occupational Safety and Health Agency (KOSHA), 308 fatal accidents 

occurred in the construction industry in 2020; 135 of those occurred in temporary structures [1]. 

Safety inspection of temporary structures generally relies on manual observation [2], which is time-

consuming and labor-intensive. To address this problem, technologies are being developed based 

on LiDAR [3, 4], strain gauge [5], accelerometer [6], and vision sensors [7, 8]. It is important to 

monitor scaffold joints because their installation status is a critical factor for scaffold safety. 

Scaffold joint monitoring is challenging because there are numerous joints to be monitored. To 

address this issue, this paper proposes a method for analyzing the installation status of scaffolds 

using UAV-acquired images. Thanks to UAVs, it is possible to monitor a large construction site in 

a safer and faster manner [8, 9, 10]. These previous studies motivatge the use of UAVs to acquire 

joint images of scaffolds. 

    The joint analysis process, as shown in Figure 1, is divided into four stages. In the first stage, 

scaffold image data are acquired from a UAV (Figure 1(a)). Second, joints are detected from UAV-

acquired images (Figure 1(b)). Third, components of each joint are detected (Figure 1(c)). At last, 

https://www.sciencedirect.com/science/article/pii/S0926580521005434#f0005


872 

 

a joint image is classified into either safe or unsafe status using a two-stage rule-based classifier 

(Figure 1(d)). The proposed method can accurately check the scaffold joint installation status in a 

short time. 
 

 

 

(a) (b) (c) (d) 

Figure 1. Research framework; (a) scaffold data acquisition using a UAV (b) joint detection, (c) 

joint component detection, (d) joint installation status analysis 

2. METHODOLOGY 

2.1. Joint detection & Joint component detection 

 

Figure 2. Joint components of the ringlock scaffold 

    For the real-time ringlock scaffold joint detection and joint component detection from UAV-

acquired images, the proposed method used an object detection algorithm, YOLOv5 [11]. The joint 

components of interest are tail, pinhole, standard, and ledger end as shown in Figure 2. The 

presence of a ledger end and standard indicates that the horizontal member of the scaffold is 

connected to the standard, and the presence of a pinhole means the joint image is vertically angled. 

Because the existence of the tail depends on the installation status of the joint, it can be an indicator 

for determining the safety of the joint. 

 

2.2. Joint installation status analysis 

    It is not appropriate to use all joint images acquired by a UAV. The position and angle of the 

UAV may generate joint images of which quality is not fit for the safety analysis because the tail 

can be occluded by other objects. To use only desired image and analyze the installation status of 

the joint, a rule-based classifier is used. For example, if a pinhole is detected in the image (Figure 

3(a)), the tail is likely to be occluded by the pinhole and the ledger end. If the bounding boxes of 

standard and ledger end overlaps with more than a certain ratio as shown in Figure 3(b), the tail 
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may be blocked by the standard. In contrast, if both tail and ledger end are detected, the joint is 

considered safe. 

                                        

                       (a)                                     (b) 

Figure 3. Examples of poor quality joint images; (a) vertically angled, (b) horizontally angled 

3. EXPERIMENTS AND RESULTS 

3.1. Datasets and implementation 

    Two image datasets (Site A (Figure 4) and Site B (Figure 5)) were used in this research. 300 

images from Site A and 60 images acquired from Site B were used for training and testing the joint 

detection model, respectively. Joint images were automatically cropped and used to train and test 

the component detection model. 693 joint images from Site A and 118 images from Site B were 

used to train and test the model, respectively. The data from Site A were used to determine the 

parameter values, while the data from Site B were used to test the rule-based classifier; a total of 

1,716 joint images from Site B were used. 

 

   

(a) (b) (c) 

Figure 4. Site A; (a) the scaffold, (b) UAV-acquired image, (c) joint image 

 

   

(a) (b) (c) 

Figure 5. Site B; (a) the scaffold, (b) UAV-acquired image, (c) joint image 
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    Two different detection models were trained using the YOLOv5 algorithm. For both models, the 

weights pre-trained with the COCO [12] dataset were used. Batch size, epochs, and learning rate 

were set to 1, 150, and 0.01, respectively to train the joint detection model. To train the joint 

component detection model, batch size was set to 4, epoch value to 50, and learning rate to 0.01. 

3.2. Results 

  As shown in Table 1, the scaffold joint detection model achieved an 89.6% F1-score. Table 2 

shows that the joint component detection model achieved 98.0% to 99.3% F1-scores for detecting 

tail, standard, and ledger end; but a 56.5% F1-score was recorded for detecting pinholes. Examples 

of detection results are shown in Figure 6. As shown in Table 3, the classifier identified safe joints 

and unsafe joints with 98.2% and 85.7% F1-scores, respectively.  

 

  

  

(a) (b) 

Figure 6. Examples of detection results; (a) joint detection, (b) joint component detection 

 

Table 1. Scaffold joint detection performance 

 

 
 

 

Table 2. Scaffold joint component detection performance 

 Precision Recall F1 score 

Joint 92.7% 86.7% 89.6% 
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Table 3. Scaffold joint installation status analysis performance 

 

 

4. CONCLUSION 

    This research proposed a new methodology for automatically analyzing the scaffold joint 

installation status. Joints and joint components were detected through the deep learning-based 

object detection algorithm, YOLOv5, from UAV-acquired images. The two-stage rule-based 

classifier was designed to choose the only desired images and analyze the installation status of 

scaffold joints based on the information on the detected joint components. Using this rule-based 

classifier, it was possible to analyze the installation status of scaffold joints with an 98.2% F1-score 

for safe joints and an 85.7% F1-score for unsafe joints, respectively. Future studies are required to 

improve the proposed method. Data augmentation and rule refinement are expected to enable the 

usage of more image data of scaffold joints. 
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