컨볼루션 신경망을 사용한 계절 이미지 분류

Seasonal Images Classification with Convolutional Neural Networks

  • 발행 : 2022.05.26

초록

최근 몇 년 동안 더 깊은 신경망 아키텍처로 인해 컴퓨터 비전 이미지 분류 작업이 더 빠르고 더 좋아졌다. 그러나 대부분의 이미지 분류 작업은 특정 이미지 모양(예: 고양이와 개 구별)을 기반으로 분류하도록 설계되었지만 낮과 밤 또는 사계절과 같은 기간을 구별하도록 훈련된 분류 모델은 많지 않다. 같은 장소의 사계절 이미지를 구분하기 위한 선행 연구는 있는 반면 일반 영상의 계절 분류 연구는 현재 부재한 실정이다. 그래서 본 논문에서는 일반 영상의 계절 분류 문제에 대한 다양한 접근 방식을 제시한다. 간단한 특징 추출부터 합성곱 신경망 구축, 전이 학습에 이르기까지 계절별 이미지 분류를 위한 세 가지 방법을 연구하고 정확도 결과를 비교, 분석하였다.

In recent years, computer vision image classification tasks have become faster and better due to deeper neural network architectures. But while most image classification tasks are designed to classify images based on specific image features (such as distinguishing between cats and dogs), there are not many classification models that have been trained to distinguish between time periods such as day and night or different seasons of the year. And while some research has been done into distinguishing between seasons in images of the same location, this paper presents a varied approach to the problem of seasonal classification of generic images. Three methods for seasonal image classification, from simple feature extraction, to building a convolutional neural network, to transfer learning were studied and the accuracy results were compared and analyzed.

키워드