Acknowledgement
이 논문은 4단계 BK21 사업(스마트로봇융합응용 교육연구단)에 의하여 지원되었음.
With the development of IoT technology, various technologies such as artificial intelligence and automation are being grafted into industrial sites, and accordingly, the importance of data processing is increasing. Image denoising is one of the basic processes of image processing, and is used as a preprocessing step in many applications. Various studies have been conducted to remove noise, but various problems arise in the process of noise removal, such as image detail preservation, texture restoration, and special noise removal. In this paper, we propose a digital filter using an extended convolutional mask to preserve image detail during the impulse denoising process. The proposed algorithm uses an extended convolution mask as a filtering mask, and obtains the final output by switching the extension level according to the noise level. Simulation was conducted to evaluate the performance of the proposed algorithm, and the performance was analyzed compared to the existing method.
IoT 기술의 발달에 따라 인공지능과 자동화와 같이 다양한 기술들이 산업현장에 접목되고 있으며, 이에 따라 데이터처리의 중요성이 높아지고 있다. 영상의 잡음제거는 영상처리의 기본적인 과정 중 하나로서, 수많은 어플리케이션에서 전처리 단계로 사용된다. 잡음제거를 위해 다양한 연구가 진행되었지만, 잡음제거 과정에서 영상의 디테일 보존, 질감 복원과 특수한 영역의 잡음 제거와 같이 다양한 문제가 발생한다. 본 논문에서는 임펄스 잡음제거 과정에서 영상의 디테일 보존을 위해 확장된 컨벌루션 마스크를 사용한 디지털 필터를 제안한다. 제안한 알고리즘은 필터링 마스크로 확장된 컨벌루션 마스크를 사용하며, 잡음수준에 따라 확장수준을 스위칭하여 최종출력을 구한다. 제안한 알고리즘의 성능을 평가하기 위해 시뮬레이션을 진행하였으며, 기존 방법과 비교하여 성능을 분석하였다.
이 논문은 4단계 BK21 사업(스마트로봇융합응용 교육연구단)에 의하여 지원되었음.