Acknowledgement
본 논문은 2022년도 정부(경찰청)의 재원으로 과학치안진흥센터의 지원을 받아 수행된 연구임(No.092021D75000000, AI 운전능력평가 표준화 및 평가 프로세스 개발)
DOI QR Code
최근에 자율 주행 자동차에 관련한 관심이 증가하면서 다양한 연구들이 도출되고 있다. 특히, 자율 주행 자동차를 시뮬레이터에서 검증하는 방법은 실 환경과 비교할 때 상대적으로 안전한 성능 검증 방법으로 많이 활용되고 있다. 시뮬레이터의 핵심 기술은 실 환경과 가상 시뮬레이션 환경의 차이를 줄이는 데 있다. 본 논문에서는 Generative Adversarial Imitation Learning(GAIL)[1] 기반으로 자율 주행 자동차 시뮬레이터 내에서 다수의 가상 동적 객체들의 움직임을 제어하는 방법을 제안한다. GAIL은 생성기와 판별기로 구성된다. 생성기는 강화학습 정책 생성기와 전문가 정책 생성기를 포함한다. 판별기는 보상 학습기를 포함한다. GAIL 기반으로 가상 자동차 및 가상 보행자를 제어함으로써 동영상에서의 이동경로를 학습해서 표현할 수 있다.
본 논문은 2022년도 정부(경찰청)의 재원으로 과학치안진흥센터의 지원을 받아 수행된 연구임(No.092021D75000000, AI 운전능력평가 표준화 및 평가 프로세스 개발)