Acknowledgement
이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (No. 2021R1F1A1047113).
DOI QR Code
최근 들어 다양한 제약 조건이 있는 스마트 시티나 스마트 팩토리와 같은 도메인들 내에서 태스크들을 효과적으로 처리하기 위해서 MEC 기술이 많이 사용되고 있다. 그러나 이러한 도메인에서 발생하는 복잡하고 동적인 시나리오는 기존의 휴리스틱이나 메타 휴리스틱 기법을 이용하여 해결하기엔 계산 복잡도가 증가하는 문제점을 가지고 있다. 따라서 최근 들어 이러한 문제점을 해결하기 위한 방법 중 하나로 강화학습과 딥러닝이 결합된 DRL 기법이 주목을 받고 있다. 본 연구는 스마트 팩토리 환경에서 종속성을 가진 태스크들이 실행시간과 태스크가 처리되는 MEC 서버들의 로드 표준편차를 최소화하는 태스크 스케줄링 기법을 제안한다. 모의실험을 통하여 제안 기법은 태스크가 증가하는 동적인 환경에서도 좋은 성능을 보임을 증명하였다.
이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (No. 2021R1F1A1047113).