Acknowledgement
이 논문은 2022년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임 (No.2020-0-00990, 5G-IoT 환경에서 이기종·비정형·대용량 데이터의 고신뢰·저지연 처리를 위한 플랫폼 개발 및 실증)
DOI QR Code
수술 중 저혈압 예측은 환자의 안전과 직결되는 중요한 과제이다. 그러나 인간이 저혈압을 예측하는 것은 많은 경험과 노하우를 필요로 하며, 현재 연구되고 있는 예측 기술은 단일 정보를 활용하여 복합적인 원인을 반영하지 못하거나, 침습적으로 데이터를 획득하여 환자에게 불편함을 준다. 비침습적으로 수집한 데이터를 통한 저혈압 발생 예측에 대한 연구는 꾸준히 진행되어 왔으나, 기존 딥러닝을 이용한 접근방법으로는 정확도가 낮다. 본 논문에서는 그 원인을 1)데이터 전처리 2)데이터 불균형 3)기존 모델의 한계로 구분하고, 이를 해결 가능한 방안을 제시한다. 실험 결과 CNN*CNN에서 Focal Loss를 사용할 때, 가장 높은 성능을 내는 것을 확인했다.
이 논문은 2022년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임 (No.2020-0-00990, 5G-IoT 환경에서 이기종·비정형·대용량 데이터의 고신뢰·저지연 처리를 위한 플랫폼 개발 및 실증)