Acknowledgement
This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1F1A1057742).
DOI QR Code
최근 스마트 기기에서 오디오 데이터를 이용하는 응용 기술들이 증가하면서, 오디오 데이터에서 관심 있는 구간을 찾아내는 기술의 필요성이 증가하고 있다. 본 논문에서는 Perceiver 모델을 활용하여 오디오 데이터에서 사람의 음성 구간을 검출하고 축약하는 방법을 제안한다. Perceiver 모델은 복잡한 입력 데이터에 대하여 Self-attention을 기반으로 특징을 추출하면서 이전의 특징을 다음 입력으로 다시 학습하는 특징을 갖고 있어서 연속적인 데이터인 오디오에 효율적으로 적용할 수 있다. 외부 및 자체에서 수집한 음성과 비음성 데이터셋에 대하여 실험을 진행하였고, 10초 단위 세그먼트에서 대해서 92.4%의 검출 정확도를 달성하였다.
This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1F1A1057742).