DOI QR코드

DOI QR Code

Knowledge Distillation for Recommender Systems in Multi-Class Settings: Methods and Evaluation

다중 클래스 환경의 추천 시스템을 위한 지식 증류 기법들의 비교 분석

  • 김지연 (한양대학교 컴퓨터소프트웨어학과) ;
  • 배홍균 (한양대학교 컴퓨터소프트웨어학과) ;
  • 김상욱 (한양대학교 컴퓨터소프트웨어학과)
  • Published : 2022.05.17

Abstract

추천 시스템에서 사용되는 피드백은 단일 클래스와 다중 클래스 피드백으로 구분할 수 있다. 추천 시스템을 위한 지식 증류 기법들은 단일 클래스 환경에서 주로 연구되어 왔다. 우리는 다중 클래스 환경에서 또한 추천 시스템을 위한 최신 지식 증류 기법들이 효과적인지에 대해 알아보고자 하며, 해당 방법들 간의 추천 정확도를 비교해보고자 한다. 추천 시스템에서 보편적으로 사용되는 데이터 셋들을 기반으로 한 실험들을 통해 추천 시스템을 위한 지식 증류 기법들은 같은 조건의 기본적인 추천 시스템에 비해 정확도가 최대 193%까지 개선되는 것을 확인했다.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구이고(No.NRF-2020R1A2B5B03001960), 2018년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No.2018R1A5A7059549). 또한, 2022년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임(No.2022-0-00352).