DOI QR코드

DOI QR Code

Task Migration for Load Balancing and Energy Efficiency based on Reinforcement Learning in UAV-Enabled MEC System

UAV 지원 MEC 시스템의 로드 밸런싱과 에너지 효율성을 고려한 강화학습 기반 태스크 마이그레이션

  • Shin, A Young (Dept. of IT engineering, Sookmyung Women's University) ;
  • Lim, Yujin (Dept. of IT engineering, Sookmyung Women's University)
  • 신아영 (숙명여자대학교 IT공학과) ;
  • 임유진 (숙명여자대학교 IT공학과)
  • Published : 2022.05.17

Abstract

최근 사물 인터넷(IoT)의 발전으로 계산 집약적이거나 지연시간에 민감한 태스크가 증가하면서, 모바일 엣지 컴퓨팅 기술이 주목받고 있지만 지상에 고정되어 있는 MEC 서버는 사용자의 요구사항 변화에 따라 서버의 위치를 변경하거나 유연하게 대처할 수 없다. 이 문제를 해결하기 위해 UAV(Unmanned Aerial Vehicle)를 추가로 이용해 엣지 서비스를 제공하는 기법이 연구되고 있다. 그러나 UAV는 지상 MEC와는 달리 배터리 용량이 제한되어 있어 태스크 마이그레이션을 통해 에너지 사용량을 최소화하는 것이 필요하다. 본 논문에서는 MEC 서버들 사이의 로드 밸런싱과 UAV MEC 서버의 에너지 효율성을 최적화하기 위해 강화학습 기법인 Q-learning을 이용한 태스크 마이그레이션 기법을 제안한다. 제안 시스템의 성능을 평가하기 위해 UAV의 개수에 따라 실험을 진행하여 잔여 에너지와 로드 밸런싱 측면에서 성능을 분석한다.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (No. 2021R1F1A1047113).