DOI QR코드

DOI QR Code

Filtering Clinical BERT (FC-BERT): An ADR Detection Model for distinguishing symptoms from adverse drug reactions

Filtering Clinical BERT (FC-BERT): 증상과 약물 이상 반응 구분을 위한 약물 이상 반응 탐지 모델

  • Lee, Chae-Yeon (Dept. of Statistics and Information Science, Dongduk Women's University) ;
  • Kim, Hyon Hee (Dept. of Statistics and Information Science, Dongduk Women's University)
  • 이채연 (동덕여자대학교 정보통계학과) ;
  • 김현희 (동덕여자대학교 정보통계학과)
  • Published : 2022.05.17

Abstract

최근 소셜미디어 리뷰 데이터를 활용한 약물 이상 반응 탐지 연구가 활발히 진행되고 있지만, 약물을 복용하기 전 증상과 약물 이상 반응을 구분하지 못한다는 한계가 있다. 본 논문에서는 약물 이상 반응 탐지에서 약물 복용 전의 증상을 구분할 수 있는 Filtering Clinical BERT(FC-BERT) 모델을 제안하였다. FC-BERT 는 약물 복용 전 증상과 다른 약물에 대한 부작용 표현을 제거하기 위해 약물명이 나오기 전 모든 문장을 제거하는 필터링과 약물-부작용 쌍을 추출하는 모델을 사용했다. 성능 평가 실험을 위해 문장에 대한 ADE(Adverse Drug Event) 여부가 들어있는 ADE Corpus V2 데이터를 활용하였고 SPARK NLP 라이브러리에서 제공하는 ADE Pipeline 모델과 비교하여 성능 평가를 실시하였다. 실험 결과 필터링을 활용한 FC-BERT 모델이 기존 모델보다 정확도, 평균 정밀도, 평균 재현율, 평균 F1-score 가 모두 높은 결과를 보여주었다. 본 논문에서 제시한 모델은 기존 연구의 한계점을 보완하여 보다 정확한 약물 부작용 시그널을 탐지하는데 기여할 수 있을 것이다.

Keywords