Acknowledgement
본 논문은 2022년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임(No. 2017-0-00072, 초실감 테라미디어를 위한 AV 부호화 및 LF 미디어 원천기술 개발)
최근 VVC(Versatile Video Coding) 표준 완료 이후 JVET(Joint Video Experts Team)에서는 NNVC(Neural Network-based Video Coding) EE(Exploration Experiment)를 통하여 화면내 예측을 포함한 신경망 기반의 부호화 기술들을 탐색하고 검증하고 있다. 본 논문에서는 VVC 에 채택되어 있는 다중 변환 선택(MTS: Multiple Transform Selection)에 따라서 적절한 예측 블록을 선택할 수 있는 TDIP(Transform-Dependent Intra Prediction) 모델을 제안한다. 실험결과 제안기법은 VVC 의 AI(All Intra) 부호화 환경에서 VTM(VVC Test Model) 대비 Y, U, V 에 각각 0.87%, 0.87%, 0.99%의 BD-rate 절감의 비디오 부호화 성능 향상을 보였다.
본 논문은 2022년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임(No. 2017-0-00072, 초실감 테라미디어를 위한 AV 부호화 및 LF 미디어 원천기술 개발)