Acknowledgement
본 연구는 과학기술정보통신부 및 정보통신기획평가원의 대학 ICT 연구센터지원사업의 연구결과로 수행되었음 (IITP-2021-2018-0-01431)
DOI QR Code
도시의 인구 밀집도가 증가함에 따라 도시의 단위 면적당 건물 밀집도 역시 증가하고 있으며, 이에 도시 화재는 대규모 화재로 발전할 가능성이 높다. 도시 내 대규모 화재로 인한 인명 및 경제적인 피해를 최소화하기 위해 시뮬레이션 기반의 화재 대응 방안들이 널리 연구되고 있으며, 최근에는 시뮬레이션에서 효과적인 화재 대응 방안을 탐색하기 위해 강화학습 기술을 활용하는 연구들이 소개되고 있다. 그러나, 시뮬레이션의 규모가 커지는 경우, 상태 정보 및 화재 대응을 위한 행위 공간의 크기가 증가함으로 인해 강화학습의 복잡도가 증가하며, 이에 따라 학습 확장성이 저하되는 문제가 발생한다. 본 논문에서는 시뮬레이션 규모 증가 시 강화학습의 학습 확장성을 유지하기 위해, 화재 상황 정보와 재난 대응을 위한 행위 공간을 변환하는 기법을 제안한다. 실험 결과를 통해 기존에 강화학습 모델의 학습이 어려웠던 대규모 도시 재난시뮬레이션에서 본 기법을 적용한 강화학습 모델은 학습 수행이 가능하였으며, 화재 피해가 없는 상황의 적합도를 100%로 하고, 이것 대비 99.2%의 화재 대응 적합도를 달성했다.
본 연구는 과학기술정보통신부 및 정보통신기획평가원의 대학 ICT 연구센터지원사업의 연구결과로 수행되었음 (IITP-2021-2018-0-01431)