Infrared cameras are widely used in recent research for automatic monitoring the abnormal behaviors of the pig. However, when deployed in real pig farms, infrared cameras always get polluted due to the harsh environment of pig farms which negatively affects the performance of pig monitoring. In this paper, we propose a real-time noise-robust infrared camera-based pig automatic monitoring system to improve the robustness of pigs' automatic monitoring in real pig farms. The proposed system first uses a preprocessor with a U-Net architecture that was trained as a GAN generator to transform the noisy images into clean images, then uses a YOLOv5-based detector to detect pigs. The experimental results show that with adding the preprocessing step, the average pig detection precision improved greatly from 0.639 to 0.759.
Keywords
Acknowledgement
This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2020R1I1A3070835 and NRF-2021R1I1A3049475) and by BK21 FOUR (Fostering Outstanding Universities for Research) funded by the Ministry of Education (MOE, Korea) and National Research Foundation of Korea (NRF).