Proceedings of the Korea Water Resources Association Conference (한국수자원학회:학술대회논문집)
- 2021.06a
- /
- Pages.6-7
- /
- 2021
Vegetation classification based on remote sensing data for river management
하천 관리를 위한 원격탐사 자료 기반 식생 분류 기법
- Lee, Chanjoo ;
- Rogers, Christine (Dept. of Water Quality and Ecology, Deltares) ;
- Geerling, Gertjan (Dept. of Water Quality and Ecology, Deltares) ;
- Pennin, Ellis (Dept. of Water Quality and Ecology, Deltares)
- Published : 2021.06.02
Abstract
Vegetation development in rivers is one of the important issues not only in academic fields such as geomorphology, ecology, hydraulics, etc., but also in river management practices. The problem of river vegetation is directly connected to the harmony of conflicting values of flood management and ecosystem conservation. In Korea, since the 2000s, the issue of river vegetation and land formation has been continuously raised under various conditions, such as the regulating rivers downstream of the dams, the small eutrophicated tributary rivers, and the floodplain sites for the four major river projects. In this background, this study proposes a method for classifying the distribution of vegetation in rivers based on remote sensing data, and presents the results of applying this to the Naeseong Stream. The Naeseong Stream is a representative example of the river landscape that has changed due to vegetation development from 2014 to the latest. The remote sensing data used in the study are images of Sentinel 1 and 2 satellites, which is operated by the European Aerospace Administration (ESA), and provided by Google Earth Engine. For the ground truth, manually classified dataset on the surface of the Naeseong Stream in 2016 were used, where the area is divided into eight types including water, sand and herbaceous and woody vegetation. The classification method used a random forest classification technique, one of the machine learning algorithms. 1,000 samples were extracted from 10 pre-selected polygon regions, each half of them were used as training and verification data. The accuracy based on the verification data was found to be 82~85%. The model established through training was also applied to images from 2016 to 2020, and the process of changes in vegetation zones according to the year was presented. The technical limitations and improvement measures of this paper were considered. By providing quantitative information of the vegetation distribution, this technique is expected to be useful in practical management of vegetation such as thinning and rejuvenation of river vegetation as well as technical fields such as flood level calculation and flow-vegetation coupled modeling in rivers.
하천에서의 식생 활착은 지형, 생태, 수리학 등의 학문 분야 뿐만 아니라 하천 관리 실무에서도 중요한 이슈 중에 하나로서 하천 식생 문제는 홍수 관리와 생태계 보전이라는 상반되는 가치의 조화에 직결된다. 국내에서는 2000년대 이후 댐 하류 조절하천, 부영화된 소규모 지류하천, 4대강 사업 대상지 고수부지 등 다양한 조건에서 하천 식생 활착과 육역화 문제가 지속적으로 제기되어 왔다. 이러한 배경에서 본 연구에서는 하천 내의 식생 분포를 원격탐사 자료를 기반으로 분류하는 기법을 제안하고 이를 내성천에 적용한 결과를 제시하였다. 내성천은 2014년부터 최근까지 지속적으로 식생 활착이 발생하여 하천 경관이 변화한 대표적인 사례 하천이다. 원격탐사 자료는 유럽항공우주국(ESA)에서 운영 중이며, Google Earth Engine에서 제공하는 Sentinel 1, 2 위성 영상을 사용하였다. 지상 참값(ground truth)으로는 수역, 사주, 초본, 목본 등을 포함한 8가지 유형으로 구분되어 있는 2016년 내성천 지표 피복 자료를 사용하였다. 분류를 위한 방법은 머신러닝 알고리듬의 하나인 랜덤 포레스트 분류 기법을 사용하였으며, 미리 선정된 10개 폴리곤 영역으로부터 1,000개의 표본을 추출하여 1/2씩 나누어 훈련 및 검증 자료로 사용하였다. 검증 자료 기반의 정확도는 82~85 %로 나타났다. 훈련을 통해 수립한 모형을 2016~2020년 자료에도 적용하여 연도에 따른 식생역의 변화 과정을 제시하였다. 본 논문의 기술적 한계와 개선 방안을 고찰하였다. 이 기법은 정량적인 식생 분포를 제공함으로써 하천에서의 홍수위 계산, 식생-수리모델링 등의 기술 분야 뿐만 아니라 간벌이나 하천 식생 회춘 유도(rejuvenation)과 같은 식생의 실무적 관리 측면에서도 활용도가 클 것으로 판단된다.