Study of the Fall Detection System Applying the Parameters Claculated from the 3-axis Acceleration Sensor to Long Short-term Memory

3축 가속 센서의 가공 파라미터를 장단기 메모리에 적용한 낙상감지 시스템 연구

  • Published : 2021.10.03

Abstract

In this paper, we introduce a long short-term memory (LSTM)-based fall detection system using TensorFlow that can detect falls occurring in the elderly in daily living. 3-axis accelerometer data are aggregated for fall detection, and then three types of parameter are calculated. 4 types of activity of daily living (ADL) and 3 types of fall situation patterns are classified. The parameterized data applied to LSTM. Learning proceeds until the Loss value becomes 0.5 or less. The results are calculated for each parameter θ, SVM, and GSVM. The best result was GSVM, which showed Sensitivity 98.75%, Specificity 99.68%, and Accuracy 99.28%.

본 논문에서는 일상생활에서의 고령자에게 나타날 수 있는 낙상상황을 감지할 수 있는 텐서플로우를 이용한 장단기 메모리 기반 낙상감지 시스템에 대하여 소개한다. 낙상감지를 위해서 3축 가속도 센서 데이터를 이용하고, 이를 처리하여 다양한 파라미터화하며 일상생활 패턴 4가지, 낙상상황 패턴 3가지로 분류한다. 파라미터화한 데이터는 정규화 과정을 따르며, 학습이 진행된다. 학습은 Loss값이 0.5 이하가 될 때까지 진행된다. 각각의 파라미터인 θ, SVM (Sum Vector Magnitude), GSVM (gravity-weight SVM)에 대하여 결과를 산출한다. 가장 좋은 결과는 GSVM으로 Sensitivity 98.75%, Specificity 99.68%, Accuracy 99.28%로 가장 좋은 결과를 보였다.

Keywords

Acknowledgement

This research was supported by the Basic Science Research Program through NRF of Korea funded by the Ministry of Education (NRF-2019R1F1A1060383)