Acknowledgement
이 논문은 2021년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임 (No.2020-0-00994, 이용환경을 반영하는 자율적 VR·AR 콘텐츠 생성 기술개발)
영상에 새로운 광원을 추가하거나 기존의 광원을 변경하여 영상 내 오브젝트들에 적용된 조명을 변경하는 것을 영상 기반 재조명이라 한다. 하지만, 영상에는 재조명을 위해 필요한 광원과 오브젝트들의 3차원 기하 정보가 부재하다는 문제가 있다. 이를 해결하기 위해, 본 연구에서는 영상으로부터 재조명에 필요한 요소들을 추정하는 접근법을 취한다. 오브젝트 표면의 노말과 알베도는 조명의 주 요소이지만 광원에는 독립적이므로 새로운 광원에 대한 재조명을 가능케 한다. 따라서 본 연구는 영상으로부터 노말맵과 알베도맵을 추정한 뒤, 이를 이용하여 영상 기반 렌더링하는 영상 재조명 방법을 제안한다. 조건부 적대적 생성망을 다양한 조명 환경에서 렌더링된 3차원 오브젝트 영상들과 그에 대응하는 노말맵, 알베도맵을 이용해 학습함으로써, 임의의 영상에 대한 노말맵과 알베도맵 추정기를 생성한다. 이를 통해 추정된 노말맵과 알베도맵은 3차원 공간상에서 새로운 광원에 대해 렌더링됨으로써 재조명 영상을 생성한다. 마지막으로, 영상 기반으로 재조명된 영상과 ground truth와의 비교 실험을 통해 본 연구에서 제안한 방법이 유효함을 확인한다.
이 논문은 2021년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임 (No.2020-0-00994, 이용환경을 반영하는 자율적 VR·AR 콘텐츠 생성 기술개발)