포인트 클라우드는 특정 개체 혹은 장면을 다수의 3 차원 포인터를 사용하여 표현하는 데이터의 표현 방식 중 하나로 3D 데이터를 정밀하게 수집하고 표현할 수 있는 방법이다. 하지만 방대한 양의 데이터를 필요로 하기 때문에 효율적인 압축이 필수적이다. 이에 따라 국제 표준화 단체인 Moving Picture Experts Group 에서는 포인트 클라우드 데이터의 효율적인 압축 방법 중 하나로 Video based Point Cloud Compression(V-PCC)에 대한 표준을 제정하였다. V-PCC 는 포인트 클라우드 정보를 Occupancy, Geometry, Texture 와 같은 다수의 2D 영상으로 변환하고 각 2D 영상을 전통적인 2D 비디오 코덱을 활용하여 압축하는 방법이다. 본 논문에서는 V-PCC 에서 변환하는 Occupancy 의 정보를 활용하여 효율적으로 Texture 영상을 압축할 수 있은 방법을 소개한다. 또한 제안방법이 V-PCC 에서 약 1%의 부호화 효율을 얻을 수 있음을 보인다.
Keywords
Acknowledgement
This work was supported by Institute of Information & communications Technology Planning & Evaluation(IITP) grant funded by the Korea government(MSIT) (No.2020-0-00452, Development of Adaptive Viewer-centric Point cloud AR/VR(AVPA) Streaming Platform)