Acknowledgement
이 논문은 2021년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임(No. 2017-0-00072).
본 논문에서는 조건부 wavenet을 이용한 음성 신호의 잡음 제거 기술을 제안한다. 기존의 음성 신호 잡음 제거 기술은 스펙트로그램을 기반으로 발전되어 왔으나, 잡음으로 인해 변형된 원음의 위상 정보를 복원할 수 없는 문제점을 가진다. 이를 해결하기 위해 시간 영역에서 전 과정을 실행하는 기계학습 모델인 wavenet을 사용하여 음성 신호의 잡음을 제거하는 방법을 제안한다. 특히, 잡음 종류를 조건으로 입력하여 성능 향상을 얻도록 한다. 성능 평가를 통하여 제안 방법이 시간 영역에서 잡음을 감소시킬 수 있음을 확인하였다.
이 논문은 2021년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임(No. 2017-0-00072).