한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리) (Annual Conference on Human and Language Technology)
- 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
- /
- Pages.105-111
- /
- 2021
- /
- 2005-3053(pISSN)
자연어 생성 모델을 이용한 준지도 학습 기반 한국어 사실 확인 자료 구축
Semi-Supervised Data Augmentation Method for Korean Fact Verification Using Generative Language Models
- 발행 : 2021.10.14
초록
한국어 사실 확인 과제는 학습 자료의 부재로 인해 연구에 어려움을 겪고 있다. 본 논문은 수작업으로 구성된 학습 자료를 토대로 자연어 생성 모델을 이용하여 한국어 사실 확인 자료를 구축하는 방법을 제안한다. 본 연구는 임의의 근거를 기반으로 하는 주장을 생성하는 방법 (E2C)과 임의의 주장을 기반으로 근거를 생성하는 방법 (C2E)을 모두 실험해보았다. 이때 기존 학습 자료에 위 두 학습 자료를 각각 추가하여 학습한 사실 확인 분류기가 기존의 학습 자료나 영문 사실 확인 자료 FEVER를 국문으로 기계 번역한 학습 자료를 토대로 구성된 분류기보다 평가 자료에 대해 높은 성능을 기록하였다. 또한, C2E 방법의 경우 수작업으로 구성된 자료 없이 기존의 자연어 추론 과제 자료와 HyperCLOVA Few Shot 예제만으로도 높은 성능을 기록하여, 비지도 학습 방식으로 사실 확인 자료를 구축할 수 있는 가능성 역시 확인하였다.