2021 Er|stautEos| =27 M28HA H[1Z (2021, 5)

Rust 112 FFIZ 2

EARTECE

LY
oy M=
I

=ls

1, f 35w, A e,)

e e A P e R

2 ool ok 17

O & %
s 1L 7O
WA 35T 4

{kymartin, iybang, jsu, jwseo} @sor.snu.ac.kr, ypaek@snu.ac.kr

A Study on Security Issues Due to Foreign Function Interface in Rust

Kayondo Martin*, In-Young Bang*, Jun-Seung You*, Ji-Won Seo*, Yun-Heung Paek*
*Department of Electrical and Computer Engineering and Inter-University Semiconductor Research
Center, Seoul National University.

Abstract

Rust is a promising system programming language that made its debut in 2010. It was developed to address
the security problems in C/C++. It features a property called ownership, on which it relies to mitigate

memory attacks. For this and its many other features, the language has consistently gained popularity and

many companies have begun to seriously consider it for production uses. However, Rust also supports safe

and unsafe regions under which the foreign function interface (FFI), used to port to other languages, falls.

In the unsafety region, Rust surrenders most of its safety features, allowing programmers to perform
operations without check. In this study, we analyze the security issues that arise due to Rust’s

safety/unsafety property, especially those introduced by Rust FFIL.

I. Introduction

Over the years, C/C++ has gained continued
employment in system programming majorly due to its
robustness. C language, especially, is preferred by
embedded systems engineers citing its closeness to
hardware, speed and lightweightness [1]. For such reasons,
most of the systems today have C/C++ as their core, on top
of which other languages are built. However, despite its
advantages, C/C++ faces a significant problem of memory
security [2]. Programmers have to be extremely vigilant to
avoid bugs that would result in memory corruption,
rendering systems vulnerable to attacks. Major memory
safety violations include:

1) Use after free (UAF)

2) Double free

3) Buffer overflow

4) Using uninitialized memory

In cases where the programmer forgets that a
certain object has been freed and tries to use it, a UAF
violation is a possibility. This of course can happen

- 151 -

following a double free, where the programmer forgets that
a given object has been freed and frees it again. A buffer
overflow may arise if the programmer accesses memory out
of bounds of the allocated object. Finally, a programmer
may attempt to use a pointer to memory that they have not
initialized yet.

Memory errors may result in:

1) a crash, if invalid memory is accessed, leading
to termination of the program.

ii) information leakage, especially if the error
arises from an overflow. In such cases, an attacker may
read privileged information.

iii) arbitrary code execution, usually as a result of
UAF and double free errors. An attacker may rely on such
errors to redirect the program to execute unintended code.
This method is mostly used to spawn reverse shells from
servers.

Years of research have been invested in devising
means to mitigate such attacks without affecting the
functionality and robustness of the language but to little

mailto:ypaek@snu.ac.kr

2021 EAIstewE3| =

H|282 ®M135 (2021 5)

success. Considerable hardware designs have attempted to
help with the issue. These include the memory tagging
mechanism (MTE) in ARMvS8.5+, Pointer Authentication
Code (PAC) mechanism by ARMvVS.3+ [3], memory
protection keys (MPK) in Intel chips [4] and AMD
Memory Guard in AMD chips. These protection
mechanisms, however, are mostly effective in mitigating
stack memory attacks and require additional crafting for
utilization in dynamic memory corruption. Compile
optimizations, such as safe stack, have also been utilized
but attackers have found corresponding bypasses.

Rust programming language presents a distinct
approach while offering relatively the same advantages as
C/C++. It guarantees memory safety while maintaining the
same robustness as or even better than C/C++. Even though
still under development, Rust promises a considerably safe
system programming environment, and its employment is
predicted to surpass C/C++ in future production. The
language relies on properties such as ownership and
mutability to ensure memory safety.

I1. Body
2.1 Memory Management in C/C++

Aside from stack memory, which is allocated on
variable declaration in a given function and deallocated
when the function exits, dynamic memory is allocated
manually by the program as a buffer. In C, allocation is
done by calling the malloc related functions. Advanced
allocation can be done by mapping memory directly
through the mmap system call. In C++, both the malloc
related functions and the new operator can be used for
allocation. To deallocate a memory object, both C and C++
can rely on the free function or munmap (depending on the
allocation function used), or C++ can use the delete
operator to free an object allocated using the new operator.
In most cases, a program relies on the system allocation
library - the allocator, rather than direct memory mapping.
Such libraries include dlmalloc, ptmalloc, jemalloc,
tcmalloc, ffmalloc etcetera. They are designed differently
based on the needs of the program, and provide different
performance and memory overhead guarantees. The major
determinants of the allocator to use are: memory needs of
the program, multithreading requirements and
lightweightness. A C/C++ programmer is tasked with
manually allocating and deallocating memory as they need
it, but they are also responsible for any possible memory
errors.

2.2 Memory management in Rust

Rust, in the background, relies on the same
memory allocation and deallocation functions, but does a
lot more to ensure memory safety. It utilizes the ownership
property to archive both performance and memory safety.
This way, without incurring performance overhead, rust

outperforms C/C++ by ensuring memory safety at
negligible cost.

2.3 Rust Ownership
The concept of ownership in Rust restricts values
from sharing ‘owners’, and is bound by the following rules:
a) Each value has a variable, the owner.
b) A value shall not have more than one owner at a
time.
c) A value shall die when its owner goes out of
scope.
Because these rules are too strict, and may appear very
aggressive to programmers, ownership is accompanied by
two other concepts; moving and borrowing to support
charing of values among owners. A part of the Rust
compiler, the borrow checker, enforces these rules and
ensures memory violation errors do not arise. Figure 1
below shows Rust’s ownership in action. In the

- fn main() {
let s1 = String::from("This string");
let s2 = s1;

printlnl("{}, has moved!"};

Figure 1. Rust’s ownership in action.

example, both s1 and s2 point to the same memory object.
When they go out of scope due to rule (c), the system
attempts to free sl and s2 at the same time, resulting in a
double free memory error. Therefore, Rust enforces the
moving concept, where in line 3, ownership is transferred
(moved) from sl to s2, invalidating s1. Due to rule (a), any
references to sl thereon will be invalid and the compiler
will throw and error. A deep copy can be made to avoid
this, depending on the desires and intentions of the
programmer.

The borrow checker also verifies the lifetimes of
the variables to mitigate errors due to using uninitialized
memory. Figure 2 below provides an example of such an
incident.

- fn main() {

let x;
@ {
let y = 1;
x = &y
}

printlnl("x = {}", x);

Figure 2. Rust enforcing rule (c)

Variable x is declared at line 2, but is initialized in the next
block. The initialization, however, refers to a variable vy,
which ‘dies’ when it goes out of scope. For that reason, x is

- 152 -

2021 FAISIELEHE =27

H|282 ®M135 (2021 5)

uninitialized on reaching line 7 and any attempt to use it
will result in error (4). The compiler rejects this code after
tracking scopes. This way, dangling pointers are avoided.

Like C/C++, Rust allows for uninitialized
variables, but contrary to C, it does not allow using them
until they are initialized. Additionally, Rust deters dangling
pointer and null pointer dereference by avoiding nullable
pointers and raw pointer dereference.

2.4 Safe Vs Unsafe Rust

Topics discussed above entail what is referred to
as safe Rust. The language also allows for an unsafe option
[5]. Normally, rust programs comprise safe and unsafe
regions. Inside an unsafe region, the programmer may go
against some of Rust’s safety rules. Unsafe rust, declared
by using the ‘unsafe’ keyword to wrap code, allows for
operations suchs raw pointer dereferencing, aliasing,
foreign function calls etcetera. Figure 3 shows a code
snippet in which raw pointer dereferencing is done (just
like in C/C++).

= fn main() {
let i = 53
let p: *const i32 = &i;
printlnli("{}", unsafe {*p});
1

Figure 3. Raw pointer dereferencing in unsafe Rust.

Such operations are considered unsafe because the pointer
p is dereferenced without any sanity check. Rust, therefore,
entrusts the programmer and assumes they consider the
operation safe enough. Figure 4 shows how unsafe Rust can
be used to violate Rust rules, hence leading to memory
violations.

- fn main() {

let buf = Vec::new();
let key = String::new()
- unsafe {
let ptr = buf.as_ptr().offset(integer_num);

let v = #ptr;
1

Figure 4. Unsafe Rust resulting in memory corruption

In this example, if ‘integer num’ is larger than the
allocated size of the buffer, ‘buf’, then the information
stored in ‘key’ can be leaked to ‘v’ in line 6. This way, Rust
is hacked just like C, and therefore ceases to be a safe
language.

2.5 Rust Foreign Function Interface (FFI)

The FFI allows Rust to interact with other
languages. Libraries written in C, for example, can be used
with Rust by using the ‘extern’ keyword. This is a big
advantage because there is no need to rewrite all existing C
libraries in Rust to attain the same functionality. External

- 153 -

blocks declared with the ‘extern’ keyword are annotated
with the ‘#[link]’ attribute containing the name of the
foreign library to make it available to Rust. This way, Rust
only needs to declare the foreign functions the exact same
way they are declared in the foreign library, and can use
their definitions from the foreign library through its
external linkage. Figures 5 and 6 show how Rust FFI is
used to import C code to Rust. Here, the add and sub
functions take two integers and return an integer. Therefore,
Rust must declare the same functions with the same names,
same types of the arguments and same return type.

extern "C" {
fn add(a: 132, b: i32) -» i32;
fn sub(a: 132, b: i32) -» 9323

- pub

}
- fn main() {
let a
let b 23
let mut c;
unsafe { ¢
let a = a+:=
let b = b+2;
unsafe { ¢

13

add(a,b);}

sub(a,b);}
}

Figure 5. Calling foreign functions from Rust.

3

4- int add(int a, int b){
5 return a+b;

6 }

7

8- int sub(int a, int b){
9 return a-b;

10 }

Figure 6. Functions to be exported to Rust defined C

The challenge, however, is that there is no means
to enforce Rust’s safety in such imported libraries. It is
therefore a Rust rule that all calls to foreign functions must
be wrapped with the ‘unsafe’ keyword. Because of this
unsafety, pointer variables sent to foreign function calls as
arguments may be used to corrupt Rust’s safety.
Considering Rust treats foreign functions as black boxes,
there seems to be no measures to possibly take to tackle
this problem indigenously. Programmers are therefore left
with a choice of either rewriting C libraries in Rust or
ensuring only safe C code is imported. This may be done
by avoiding any external functions that take pointers as
arguments, a restriction that renders FFI virtually useless.

YEN3 =28

H|282 ®M135 (2021 5)

2.6 Possible Mitigations

There are numerous research works that have
been done in attempt to solve the problem, but current
solutions provide either partial safety, require an enormous
effort to write supplementary code to the Rust compiler or
memory allocator, or protect only a subset of programs.

Liu et al. present XRust [6], a mechanism to
mitigate security threats due to unsafe Rust. They ensure
that memory allocation in safe regions is done separately
from that in unsafe regions, thereby restricting access to
the safe region from the unsafe region. This approach
provides a fair solution to the problem, but the incurred
overhead is significant. It also requires an enormous effort
to apply, requiring programmers to use other means of
memory allocation than originally learned in Rust
programming. The learning curve is not as significant as
the overhead issue. The high overhead incurred in applying
XRust to important libraries like vec and string pose a big
challenge to the adaptation of the solution for production
use.

Other possible solutions to this problem include
MemSentry by Koning et al [4], where safe regions are
isolated by relying on Intel’s MPK. A similar approach may
be ERIM as presented by Vahldiek-Oberwagner et al [7],
where Intel’s MPK is used to isolate domains. These
mechanisms work for Intel processor based systems, but
adopting ARM’s MTE or PAC may be used similarly to
achieve the same goal. Farkhani et al. present PTAuth [3], a
memory protection mechanism based on ARM’s PAC.
Such a mechanism may be used to apply particular
Authentication Codes to objects allocated in safe regions,
making them inaccessible to unsafe code.

At the moment, there is no confirmed solution to this
problem and a lot of research is being done to find an
applicable measure to tackle it.

III. Conclusion

Rust programming language is still young but its
popularity is on the rise than ever before. It is no doubt it
can be a lot better, but its promising security features are
giving it a head start and perhaps preference over its C/C++
counterpart. Its foreign function interface is another feature
that has made it easy to adopt, yet on the other hand, could
possibly be its nemesis if not paid special attention. The
language attempts to provide a safe environment for system
programming, and in order for its success, programmers
will have to fully acknowledge its security features without
the need for special patches. Finding a means to use
completely safe Rust FFI will be a big step ahead for both
language users and developers. There have been many
attempts to solve the memory safety problems in C/C++ but
most of the suggested solutions have turned out costly
either performance wise or memory wise. This poses a
challenge for Rust, if it is to replace C/C++ for good. Just

- 154 -

like the C/C++ memory safety problem, will Rust’s
unsafety (and thus FFI) issues become its eternal weakness
that software engineers will aim to circumvent forever?

IV. Acknowledgement

This work was supported by the National
Research Foundation of Korea (NRF) grant funded by the
Korean government (MSIT)
(NRF-2020R1A2B5B03095204) and the BK21 FOUR
program of the Education and Research Program for Future
ICT Pioneers, Seoul National University in 2021.

V. References

[1] Sangehul, Lee and Jae, Wook, Jeon, Evaluating
performance of Android platform using native C for
embedded systems, ICCAS, 2010

[2] Shin, Jangseop and Kwon, Donghyun and Seo, Jiwon
and Cho, Yeongpil and Paek, Yunheung, CRCount: Pointer
Invalidation with Reference Counting to Mitigate
Use-after-free in Legacy C/C++, NDSS: Network and
Distributed System Security Symposim, 2019

[3] Farkhani, Reza and Ahmadi, Mansour and Lu,
Long, PTAuth: Temporal Memory Safety via
Points-to Authentication, Cryptography and Security,
2020

[4] Koning, Koen and Chen, Xi and Bos, Herbert, No
Need to Hide: Protecting Safe Regions on
Commodity =~ Hardware, = EuroSys: European
Conference on Computer Systems, 2017

[5] Astrauskas, Vytautas and Matheja, Christoph and Poli,
Federico and Muller, Peter and Summers, Alexander, How
do Programmers Use Unsafe Rust?, IEEE: Proceedings of
the ACM on Programming Languages, 2020

[6] Liu, Peiming and Zhao, Gang and Huang, Jeff,
Securing Unsafe Rust Programs with XRust, IEEE:
International Conference on Software Engineering,
2020

[7] Anjo, Vahldiek-Oberwagner and Eslam, Elnikety
and Nuno, Duarte and Michael, Sammler and Peter,
Druschel and Deepa, Garg, ERIM: Secure, Efficient
In-process Isolation with Protection Keys (MPK),
USENIX Security Symposium, 2019

