

가상화의 발전에 대한 서베이

박주영*, 신동주*, 김종국*

*고려대학교 전기전자공학부
nehalem@korea.ac.kr, alansynn@korea.ac.kr, jongkook@korea.ac.kr

A Survey on the Advancement of Virtualization Technology

JooYoung Park*, DoangJoo Synn*, JongKook Kim*

*Dept. of Electric and Electronics Engineering, Korea University

Abstract

This paper is a survey on the advancement of virtualization technology. Virtualization of resources was an

inevitable path in modern computer systems. This abstraction of hardware allowed the decoupling of the operating

system that manages the hardware and applications' requirements by adding a layer between them. It also led to the

application-centric view of computing and light virtual machines, where each represents a computer networking

device. As virtualization technology ripens, the performance of virtual machines can only improve. This paper will

be introducing how virtualization technology has evolved from Xen to LightVM and Firecracker.

1. Introduction

In the early stages of kernels, monolithic kernels were

outperforming -kernel, a cornerstone for virtualization.

Monolithic kernel architecture had the entire OS run in kernel

space, while -kernel architecture minimized the kernel and

implemented server applications outside the kernel. Efforts to

share resources across applications lead to the advancement of

Exokernel, which is crucial for virtualization. Exokernel binds

multiple library OS and hardware resources directly and

securely. Xen, the x86 virtual machine monitor, was then

presented to run multiple OSes on a single machine. Xen

implemented hypervisor, which distributes hardware

resources across multiple virtual machines, and it runs on host

hardware directly. KVM, Kernel-based Virtual Machine

which switches Linux system to hypervisor, and QEMU, an

open-source emulator, was combined to propose a new type of

hypervisor, which runs on a host OS as a software layer or

application. Container OS could not run multiple OSes, but it

could move containers from one kernel version to another

while running with live migration. Each virtual machine was

much lighter than other implementations. Borg and

Kubernetes successfully offered a new method of viewing

clusters as application-oriented by using containers as a unit

of management, not machine-oriented. ClickOS was

developed to meet network function virtualization needs,

using modified Xen as hypervisor and Click as a programming

abstraction. To minimize the tradeoff between performance

and security made by container and virtual machines,

LightVM and Firecracker were introduced. LightVM is based

on Xen but heavily modified to reduce the overhead caused by

Xen. Firecracker is based on KVM and QEMU, replacing

QEMU with a modified version of Google’s Chrome OS

Virtual Machine Monitor.

2. -kernel is not a delusion

A kernel, in traditional perspective, is a part of OS that is

mandatory and common to all other software. -kernel’s basic

idea is to minimize the kernel and to implement server

applications outside the kernel if possible. This approach

presented some software technological advantages, which are:

(1) makes kernel interface and structure modular, (2) servers

can use features provided by -kernel, which makes server

programs run just like user programs, (3) system becomes

more flexible and customizable, as different API and strategies

can coexist in the system.

Although there were many implementation attempts, they

lacked efficiency, which led to bad performance, and

restricted flexibility. It was widely believed that inefficiency

of -kernel is inherent. However, Jochen Liedtke [1]

discovered that these inefficiencies were delivered due to

inadequate implementation. He argued that -kernels were

built on a thin hardware-dependent layer, which made kernel

machine-independent but created performance overheads.

Also, a lack of appropriate abstractions cost -kernels

flexibility and performance. In the modified implementation,

a lightweight kernel allows appropriate abstraction and

isolation methods and moves server applications to user

space to gain flexibility. This suggested approach provided

the implementation of arbitrary operating systems and

exploitation of varieties of hardware.

- 12 -

2021 춘계학술발표대회 논문집 제28권 제1호 (2021. 5)

3. How to manage machine resources

In traditional operating systems, fixed interface and

operating system abstractions lead to applications’ flexibility,

performance, and functionality limitations. They create virtual

machines in which applications execute. In Exokernel [2],

they implement OS abstractions as library at the application-

level. They export hardware resources to application with two

techniques. One is secure binding, which binds application to

machine resources, and another is abort protocol, which

allows Exokernel to break secure binding.

Exokernel comes with an operating system called Library

OS, which works above Exokernel, implementing high-level

abstraction. Library OS is tightly coupled to applications

because it can be modified by users, easy to be specialized,

and as Exokernel does not trust Library OS, Library OS can

trust applications, not hurting application performance. The

overall system structure is illustrated in Figure 1. Each Library

OS implements its own system objects and policies.

Figure 1: Exokernel-based system Overview [2]

4. How can a system hold multiple OSes?

Modern computers use virtual machines, which run on

separate operating system instance. There are several

challenges to execute multiple OS concurrently:(1) virtual

machines must be isolated from one another, (2) wide range of

OSes should be supported, (3) minimize performance

overhead due to virtualization.

Xen [3], an x86 virtual machine monitor, was presented as

a solution. Xen is placed between hardware and virtual

machine (Figure 2), multiplexing hardware at the granularity

of an entire operating system and providing performance

isolation among virtual machines. Xen also implements

paravirtualization for several reasons. First is to meet the

requirement of running 100 virtual machines, and second is

due to architectural reasons. x86 architecture is not fully

virtualizable in the first place, as they did not take

virtualization into account when they were designed. However,

paravirtualization requires modifying guest OS, but Linux and

XP only had to modify 1.36%, 0.04% of their codebase [3].

Xen design principles were; (1) Support for running

unmodified application binary, (2) supporting full OS, (3)

obtaining high performance and resource isolation, and

abstracting resource completely which lowers correctness and

performance (e.g., hardware page walker needs full

availability of resources). By designing Xen to separate policy

from mechanism wherever possible, Xen’s overhead became

negligible close to the baseline Linux system. Hypervisor was

designed to provide only basic controls, not involved in or

even aware of the actual event.

Figure 2: The structure of a machine running the Xen hypervisor,

running multiple different guest OS [3]

5. QEMU and KVM, a way to new type of hypervisor

QEMU [4] is a machine emulator, which lets the user run

target OS on top of another OS in a virtual machine. QEMU

consists of many emulators and a dynamic translator. Dynamic

translator performs runtime conversion of target CPU

instructions into the host instruction set. This begins by

splitting target CPU instructions into micro-operations. And

then while they are translated into host functions, they bundle

translated functions into Translated Blocks (TBs). TB contains

codes between codes that modify CPU state and cached for

later use. And they are chained to accelerate common cases.

KVM [5] makes Linux system a hypervisor. KVM adopted

new execution mode, “guest mode”, which has all regular

privilege levels, except some execution gets trapped.

Hardware state switch is implemented for speed, and MMU is

virtualized, but not in way of classic shadow page table sync

manner. KVM write protects guest OS’s pages, and when a

write to a guest page is trapped, KVM emulates precise effect

on both guest and shadow page table. KVM also supports live

migration, transporting a virtual machine from one host to

another without interrupting guest execution for more than a

few tens of milliseconds.

Figure 3: Type 1 (left) and Type 2 (right) Hypervisor [6]

- 13 -

2021 춘계학술발표대회 논문집 제28권 제1호 (2021. 5)

Figure 4: Container Overview [7]

QEMU and KVM combined, KVM enables virtualization

capabilities provided by hardware, and QEMU emulates entire

memory and I/O. They work together to simulate virtual

machine hardware. As they got together, they form a type-2

hypervisor (see figure 3), which is much simple to manage,

and easy to be used for testing. The QEMU+KVM approach

is a different structure compared to Xen, which is the type-1

hypervisor. Type-1 hypervisors have to provide some OS

functionality, but type-2 hypervisors can depend on the host

operating system.

6. Container-based OS

The most significant difference between the hypervisor and

container-based OS(COS)[7] is that hypervisors support

multiple kernels on one system, but COS does not.

Furthermore, COS goes one step further in migrating

hypervisors because they support live-update, which means

migration from one kernel version to another.

Figure 4 is an architecture of COS. COS shares a host

kernel, and each container has its own file system, including

chroot barrier. Thus, namespace is isolated, and resource is

also isolated per container. VServer filesystem unifies files

common to more than one VM, and the only drawback is

virtual machine dying and destroying files.

7. From Borg to Kubernetes

Borg [8] is a cluster manager that runs thousands of jobs

across thousands of clusters, each with thousands of machines.

Borg hides the detail of resource management and handles

failure automatically; therefore, it operates with very high

reliability and availability.

Users submit workloads to Borg in jobs, which consists of

one or more tasks, and each job runs in one Borg cell, which

consists of thousands of machines. Each task is mapped to a

set of Linux processes running in a container on a machine.

Ineach cell (see figure 5), there are redundant, five copies of

BorgMaster, multi processed schedulers, and a Borglet, local

Borg agents that reside in each machine. BorgMaster saves

states of all machines in cell and all changes are snapshotted.

Scheduler does two jobs; first is feasibility checking, which is

finding machines that task could run, and second is scoring,

picking one of feasible machines. Borglet sends BorgMaster

its health and state every few seconds.

While building and running Borg, there were some benefits

we could get. As container abstracted away many details of

machines and OSes, clusters became application-oriented, not

machine-oriented, which improved application development

and introspection. Application developers, infrastructure

teams were both relieved from compatibility issues, and

telemetries collected in application units.

Kubernetes [9] is an open-source, improved software-

engineered version of Borg, easy to deploy and efficiently

manage complex distribution systems. Kubernetes’ goal is to

give programmers productivity, and ease manual and

automated system management.

Figure 5: Borg Overview [8]

8. ClickOS and Network Function Virtualization

There are many middleboxes deployed in access and

enterprise networks which have many downsides: expensive,

unable to add new features without replacing them, cannot

scale up or down quickly, and even takes a significant

investment to develop new device. Due to these drawbacks,

demands toward network function virtualization, NFV were

widely accepted. Requirements were: (1) flexibility to run

different types of software middleboxes, (2) isolation to

support multi-tenant, (3) high throughput and low delay as

middleboxes are mostly deployed at operator environment, (4)

scalability to scale up and down quickly following traffic

difference.

ClickOS[10] adopted Xen as a hypervisor, Click modular

router software [11] as a programming abstraction, and a

tailor-made guest OS to run Click. There were number of

overhauls done to Xen network interface (see Figure 6), like

changing Open vSwitch to ClickOS switch for exposing per

port ring packet buffers, removing netback from pipe, only

keeping control plane, and modifying netfront driver to map

directly to exposed memory space, and netback driver to proxy

event channel notifications netfront driver.

ClickOS is proof that software solution alone is enough to

speed up NFV processing significantly. Small, quick-to-boot

virtual machines made it possible to offer personalized

processing to a large number of users with comparatively little

hardware.

- 14 -

2021 춘계학술발표대회 논문집 제28권 제1호 (2021. 5)

Figure 6: Standard Xen network I/O pipe (top), and optimized

ClickOS one (bottom) [11]

9. Middle ground between VM and container

In a traditional approach, there is a choice between

containers and virtualization. Containers tend to provide light

overhead lack security due to kernel syscall API, and virtual

machines provide sound isolation and security features, but

with heavyweight. Some projects were promoted to get free of

these tradeoffs. There were some approaches to hypervisor-

based virtualization, one was type-1 hypervisor, which was

implemented by LightVM [12] by slimming down Xen, and

another is type-2 hypervisor, implemented by Firecracker [13]

by using KVM and minimalized virtual machine monitor.

LightVM did a significant overhaul on Xen architecture to

avoid major overhead parts, XenStore interaction and device

creation. First, LightVM does not use the XenStore for VM

creation or boot because the hypervisor already keeps the most

necessary information about a VM. Secondly, LightVM splits

VM creation functionality to prepare and execute phase,

reducing the amount of work done on VM creation. With these

implementations, LightVM achieved comparable boot time to

fork/exec implementation in Linux, and almost constant

creation and boot times regardless of the number of running

VMs.

Firecracker, on the other hand, did large-scale modification

to KVM/QEMU architecture by replacing QEMU with a

modified version of Google’s Chrome OS Virtual Machine

Monitor which device drivers are removed. Firecracker

provides limited number of emulated devices since it does not

require most of them, and block devices for storage instead of

filesystem passthrough due to security problem. Firecracker

used KVM to support modern Linux hosts and guests. Reason

for this is that Firecracker had to rely on component built into

Linux due to implementation cost and operation knowledge

from the previous infrastructure. Firecracker achieved primary

goals to successfully replace its predecessor, which used

Linux containers to isolate functions and virtualization to

isolate between customer account, leading to a tradeoff

between security, compatibility, and efficiency.

10. Conclusion

This paper presented a survey on the advancement of

virtualization. Virtualization was first developed to share

resources across multiple applications. The advancement of

virtualization allowed the shift from machine-oriented view to

an application-oriented approach for computing services.

Future research should focus on both abstraction and

flexibility, which hides out as much machine-centric view

from programmers but allows direct access to hardware if

needed.

Reference

[1] Liedtke, Jochen. "On micro-kernel construction." ACM

SIGOPS Operating Systems Review 29.5 (1995): 237-250.

[2] Engler, Dawson R., M. Frans Kaashoek, and James

O'Toole Jr. "Exokernel: An operating system architecture

for application-level resource management." ACM

SIGOPS Operating Systems Review 29.5 (1995): 251-266

[3] Barham, Paul, et al. "Xen and the art of

virtualization." ACM SIGOPS operating systems

review 37.5 (2003): 164-177.

[4] Bellard, Fabrice. "QEMU, a fast and portable dynamic

translator." USENIX annual technical conference,

FREENIX Track. Vol. 41. 2005.

[5] Kivity, Avi, et al. "kvm: the Linux virtual machine

monitor." Proceedings of the Linux symposium. Vol. 1. No.

8. 2007.

[6] Fenn, Michael, et al. "An evaluation of KVM for use in

cloud computing." Proc. 2nd International Conference on

the Virtual Computing Initiative, RTP, NC, USA. 2008.

[7] Soltesz, Stephen, et al. "Container-based operating system

virtualization: a scalable, high-performance alternative to

hypervisors." Proceedings of the 2Nd ACM

SIGOPS/EuroSys european conference on computer

systems 2007. 2007.

[8] Verma, Abhishek, et al. "Large-scale cluster management

at Google with Borg." Proceedings of the Tenth European

Conference on Computer Systems. 2015.

[9] Burns, Brendan, et al. "Borg, Omega, and Kubernetes:

Lessons learned from three container-management

systems over a decade." Queue 14.1 (2016): 70-93.

[10] Martins, Joao, et al. "ClickOS and the art of network

function virtualization." 11th {USENIX} Symposium on

Networked Systems Design and Implementation ({NSDI}

14). 2014.

[11] Kohler, Eddie, et al. "The Click modular router." ACM

Transactions on Computer Systems (TOCS) 18.3 (2000):

263-297.

[12] Manco, Filipe, et al. "My VM is Lighter (and Safer) than

your Container." Proceedings of the 26th Symposium on

Operating Systems Principles. 2017.

[13] Agache, Alexandru, et al. "Firecracker: Lightweight

virtualization for serverless applications." 17th {usenix}

symposium on networked systems design and

implementation ({nsdi} 20). 2020.

- 15 -

2021 춘계학술발표대회 논문집 제28권 제1호 (2021. 5)

