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Abstract 

This paper is a survey on the advancement of virtualization technology. Virtualization of resources was an 

inevitable path in modern computer systems. This abstraction of hardware allowed the decoupling of the operating 

system that manages the hardware and applications' requirements by adding a layer between them. It also led to the 

application-centric view of computing and light virtual machines, where each represents a computer networking 

device. As virtualization technology ripens, the performance of virtual machines can only improve. This paper will 

be introducing how virtualization technology has evolved from Xen to LightVM and Firecracker. 

 

1. Introduction 

In the early stages of kernels, monolithic kernels were 

outperforming -kernel, a cornerstone for virtualization. 

Monolithic kernel architecture had the entire OS run in kernel 

space, while -kernel architecture minimized the kernel and 

implemented server applications outside the kernel. Efforts to 

share resources across applications lead to the advancement of 

Exokernel, which is crucial for virtualization. Exokernel binds 

multiple library OS and hardware resources directly and 

securely. Xen, the x86 virtual machine monitor, was then 

presented to run multiple OSes on a single machine. Xen 

implemented hypervisor, which distributes hardware 

resources across multiple virtual machines, and it runs on host 

hardware directly. KVM, Kernel-based Virtual Machine 

which switches Linux system to hypervisor, and QEMU, an 

open-source emulator, was combined to propose a new type of 

hypervisor, which runs on a host OS as a software layer or 

application. Container OS could not run multiple OSes, but it 

could move containers from one kernel version to another 

while running with live migration. Each virtual machine was 

much lighter than other implementations. Borg and 

Kubernetes successfully offered a new method of viewing 

clusters as application-oriented by using containers as a unit 

of management, not machine-oriented. ClickOS was 

developed to meet network function virtualization needs, 

using modified Xen as hypervisor and Click as a programming 

abstraction. To minimize the tradeoff between performance 

and security made by container and virtual machines, 

LightVM and Firecracker were introduced. LightVM is based 

on Xen but heavily modified to reduce the overhead caused by 

Xen. Firecracker is based on KVM and QEMU, replacing 

QEMU with a modified version of Google’s Chrome OS 

Virtual Machine Monitor. 

 

2. -kernel is not a delusion 

A kernel, in traditional perspective, is a part of OS that is 

mandatory and common to all other software. -kernel’s basic 

idea is to minimize the kernel and to implement server 

applications outside the kernel if possible. This approach 

presented some software technological advantages, which are: 

(1) makes kernel interface and structure modular, (2) servers 

can use features provided by -kernel, which makes server 

programs run just like user programs, (3) system becomes 

more flexible and customizable, as different API and strategies 

can coexist in the system. 

Although there were many implementation attempts, they 

lacked efficiency, which led to bad performance, and 

restricted flexibility. It was widely believed that inefficiency 

of -kernel is inherent. However, Jochen Liedtke [1] 

discovered that these inefficiencies were delivered due to 

inadequate implementation. He argued that -kernels were 

built on a thin hardware-dependent layer, which made kernel 

machine-independent but created performance overheads. 

Also, a lack of appropriate abstractions cost -kernels 

flexibility and performance. In the modified implementation, 

a lightweight kernel allows appropriate abstraction and 

isolation methods and moves server applications to user 

space to gain flexibility. This suggested approach provided 

the implementation of arbitrary operating systems and 

exploitation of varieties of hardware. 
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3. How to manage machine resources 

In traditional operating systems, fixed interface and 

operating system abstractions lead to applications’ flexibility, 

performance, and functionality limitations. They create virtual 

machines in which applications execute. In Exokernel [2], 

they implement OS abstractions as library at the application-

level. They export hardware resources to application with two 

techniques. One is secure binding, which binds application to 

machine resources, and another is abort protocol, which 

allows Exokernel to break secure binding. 

Exokernel comes with an operating system called Library 

OS, which works above Exokernel, implementing high-level 

abstraction. Library OS is tightly coupled to applications 

because it can be modified by users, easy to be specialized, 

and as Exokernel does not trust Library OS, Library OS can 

trust applications, not hurting application performance. The 

overall system structure is illustrated in Figure 1. Each Library 

OS implements its own system objects and policies. 

 

 
Figure 1: Exokernel-based system Overview [2] 

 

4. How can a system hold multiple OSes? 

Modern computers use virtual machines, which run on 

separate operating system instance. There are several 

challenges to execute multiple OS concurrently:(1) virtual 

machines must be isolated from one another, (2) wide range of 

OSes should be supported, (3) minimize performance 

overhead due to virtualization. 

Xen [3], an x86 virtual machine monitor, was presented as 

a solution. Xen is placed between hardware and virtual 

machine (Figure 2), multiplexing hardware at the granularity 

of an entire operating system and providing performance 

isolation among virtual machines. Xen also implements 

paravirtualization for several reasons. First is to meet the 

requirement of running 100 virtual machines, and second is 

due to architectural reasons. x86 architecture is not fully 

virtualizable in the first place, as they did not take 

virtualization into account when they were designed. However, 

paravirtualization requires modifying guest OS, but Linux and 

XP only had to modify 1.36%, 0.04% of their codebase [3]. 

Xen design principles were; (1) Support for running 

unmodified application binary, (2) supporting full OS, (3) 

obtaining high performance and resource isolation, and 

abstracting resource completely which lowers correctness and 

performance (e.g., hardware page walker needs full 

availability of resources). By designing Xen to separate policy 

from mechanism wherever possible, Xen’s overhead became 

negligible close to the baseline Linux system. Hypervisor was 

designed to provide only basic controls, not involved in or 

even aware of the actual event. 

 

 
Figure 2: The structure of a machine running the Xen hypervisor, 

running multiple different guest OS [3] 

 

5. QEMU and KVM, a way to new type of hypervisor 

QEMU [4] is a machine emulator, which lets the user run 

target OS on top of another OS in a virtual machine. QEMU 

consists of many emulators and a dynamic translator. Dynamic 

translator performs runtime conversion of target CPU 

instructions into the host instruction set. This begins by 

splitting target CPU instructions into micro-operations. And 

then while they are translated into host functions, they bundle 

translated functions into Translated Blocks (TBs). TB contains 

codes between codes that modify CPU state and cached for 

later use. And they are chained to accelerate common cases.  

KVM [5] makes Linux system a hypervisor. KVM adopted 

new execution mode, “guest mode”, which has all regular 

privilege levels, except some execution gets trapped. 

Hardware state switch is implemented for speed, and MMU is 

virtualized, but not in way of classic shadow page table sync 

manner. KVM write protects guest OS’s pages, and when a 

write to a guest page is trapped, KVM emulates precise effect 

on both guest and shadow page table. KVM also supports live 

migration, transporting a virtual machine from one host to 

another without interrupting guest execution for more than a 

few tens of milliseconds.  

 

 
Figure 3: Type 1 (left) and Type 2 (right) Hypervisor [6] 
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Figure 4: Container Overview [7] 

 

QEMU and KVM combined, KVM enables virtualization 

capabilities provided by hardware, and QEMU emulates entire 

memory and I/O. They work together to simulate virtual 

machine hardware. As they got together, they form a type-2 

hypervisor (see figure 3), which is much simple to manage, 

and easy to be used for testing. The QEMU+KVM approach 

is a different structure compared to Xen, which is the type-1 

hypervisor. Type-1 hypervisors have to provide some OS 

functionality, but type-2 hypervisors can depend on the host 

operating system. 

 

6. Container-based OS 

The most significant difference between the hypervisor and 

container-based OS(COS)[7] is that hypervisors support 

multiple kernels on one system, but COS does not. 

Furthermore, COS goes one step further in migrating 

hypervisors because they support live-update, which means 

migration from one kernel version to another.  

Figure 4 is an architecture of COS. COS shares a host 

kernel, and each container has its own file system, including 

chroot barrier. Thus, namespace is isolated, and resource is 

also isolated per container. VServer filesystem unifies files 

common to more than one VM, and the only drawback is 

virtual machine dying and destroying files. 

 

7. From Borg to Kubernetes 

Borg [8] is a cluster manager that runs thousands of jobs 

across thousands of clusters, each with thousands of machines. 

Borg hides the detail of resource management and handles 

failure automatically; therefore, it operates with very high 

reliability and availability.  

Users submit workloads to Borg in jobs, which consists of 

one or more tasks, and each job runs in one Borg cell, which 

consists of thousands of machines. Each task is mapped to a 

set of Linux processes running in a container on a machine. 

Ineach cell (see figure 5), there are redundant, five copies of 

BorgMaster, multi processed schedulers, and a Borglet, local 

Borg agents that reside in each machine. BorgMaster saves 

states of all machines in cell and all changes are snapshotted. 

Scheduler does two jobs; first is feasibility checking, which is 

finding machines that task could run, and second is scoring, 

picking one of feasible machines. Borglet sends BorgMaster 

its health and state every few seconds.  

While building and running Borg, there were some benefits 

we could get. As container abstracted away many details of 

machines and OSes, clusters became application-oriented, not 

machine-oriented, which improved application development 

and introspection. Application developers, infrastructure 

teams were both relieved from compatibility issues, and 

telemetries collected in application units. 

Kubernetes [9] is an open-source, improved software-

engineered version of Borg, easy to deploy and efficiently 

manage complex distribution systems. Kubernetes’ goal is to 

give programmers productivity, and ease manual and 

automated system management.  

 

 
Figure 5: Borg Overview [8] 

 

8. ClickOS and Network Function Virtualization 

There are many middleboxes deployed in access and 

enterprise networks which have many downsides:  expensive, 

unable to add new features without replacing them, cannot 

scale up or down quickly, and even takes a significant 

investment to develop new device. Due to these drawbacks, 

demands toward network function virtualization, NFV were 

widely accepted. Requirements were: (1) flexibility to run 

different types of software middleboxes, (2) isolation to 

support multi-tenant, (3) high throughput and low delay as 

middleboxes are mostly deployed at operator environment, (4) 

scalability to scale up and down quickly following traffic 

difference. 

ClickOS[10] adopted Xen as a hypervisor, Click modular 

router software [11] as a programming abstraction, and a 

tailor-made guest OS to run Click. There were number of 

overhauls done to Xen network interface (see Figure 6), like 

changing Open vSwitch to ClickOS switch for exposing per 

port ring packet buffers, removing netback from pipe, only 

keeping control plane, and modifying netfront driver to map 

directly to exposed memory space, and netback driver to proxy 

event channel notifications netfront driver.  

ClickOS is proof that software solution alone is enough to 

speed up NFV processing significantly. Small, quick-to-boot 

virtual machines made it possible to offer personalized 

processing to a large number of users with comparatively little 

hardware. 
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Figure 6: Standard Xen network I/O pipe (top), and optimized 

ClickOS one (bottom) [11] 

 

9. Middle ground between VM and container 

In a traditional approach, there is a choice between 

containers and virtualization. Containers tend to provide light 

overhead lack security due to kernel syscall API, and virtual 

machines provide sound isolation and security features, but 

with heavyweight. Some projects were promoted to get free of 

these tradeoffs. There were some approaches to hypervisor-

based virtualization, one was type-1 hypervisor, which was 

implemented by LightVM [12] by slimming down Xen, and 

another is type-2 hypervisor, implemented by Firecracker [13] 

by using KVM and minimalized virtual machine monitor. 

LightVM did a significant overhaul on Xen architecture to 

avoid major overhead parts, XenStore interaction and device 

creation. First, LightVM does not use the XenStore for VM 

creation or boot because the hypervisor already keeps the most 

necessary information about a VM. Secondly, LightVM splits 

VM creation functionality to prepare and execute phase, 

reducing the amount of work done on VM creation. With these 

implementations, LightVM achieved comparable boot time to 

fork/exec implementation in Linux, and almost constant 

creation and boot times regardless of the number of running 

VMs.  

Firecracker, on the other hand, did large-scale modification 

to KVM/QEMU architecture by replacing QEMU with a 

modified version of Google’s Chrome OS Virtual Machine 

Monitor which device drivers are removed. Firecracker 

provides limited number of emulated devices since it does not 

require most of them, and block devices for storage instead of 

filesystem passthrough due to security problem. Firecracker 

used KVM to support modern Linux hosts and guests. Reason 

for this is that Firecracker had to rely on component built into 

Linux due to implementation cost and operation knowledge 

from the previous infrastructure. Firecracker achieved primary 

goals to successfully replace its predecessor, which used 

Linux containers to isolate functions and virtualization to 

isolate between customer account, leading to a tradeoff 

between security, compatibility, and efficiency. 

 

10. Conclusion 

This paper presented a survey on the advancement of 

virtualization. Virtualization was first developed to share 

resources across multiple applications. The advancement of 

virtualization allowed the shift from machine-oriented view to 

an application-oriented approach for computing services. 

Future research should focus on both abstraction and 

flexibility, which hides out as much machine-centric view 

from programmers but allows direct access to hardware if 

needed. 
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