과제정보
이 성과는 2021년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NRF-2012R1A2C2011966)
DOI QR Code
최근 반려동물 관련 산업이 증가함에 따라 반려동물의 행동을 분석하는 연구가 진행되고 있다. 이를 바탕으로 본 논문에서는 반려동물 행동 분석을 통한 이상행동 예측 시스템을 제안한다. 이 시스템은 CCTV로부터 반려동물의 영상 데이터를 수집하고, YOLOv4(You Only Look Once version 4)를 통해 반려동물의 객체를 탐지한다. 행동을 분석하기 위해 탐지된 반려동물 객체를 DeepLabCut 딥러닝 알고리즘을 사용하여 관절 좌표 정보를 추출한다. 추출된 관절 좌표와 반려동물의 일반적인 행동을 매칭하여 이상행동을 예측하기 위한 DNN(Deep Neural Networks)의 입력 데이터로써 사용된다. 위 과정을 통해 반려동물의 전체적인 행동을 분석하여 이상행동을 예측한다. 이 시스템을 통해 반려동물의 행동을 분석하고 이상행동을 예측함으로써 반려동물 의료 관련 사업에도 적용될 수 있을 것이다.
이 성과는 2021년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NRF-2012R1A2C2011966)