DOI QR코드

DOI QR Code

A WWMBERT-based Method for Improving Chinese Text Classification Task

중국어 텍스트 분류 작업의 개선을 위한 WWMBERT 기반 방식

  • Wang, Xinyuan (Dept. of Software Engineering, Hanyang University) ;
  • Joe, Inwhee (Dept. of Software Engineering, Hanyang University)
  • 왕흠원 (한양대학교 컴퓨터소프트웨어학과) ;
  • 조인휘 (한양대학교 컴퓨터소프트웨어학과)
  • Published : 2021.05.12

Abstract

In the NLP field, the pre-training model BERT launched by the Google team in 2018 has shown amazing results in various tasks in the NLP field. Subsequently, many variant models have been derived based on the original BERT, such as RoBERTa, ERNIEBERT and so on. In this paper, the WWMBERT (Whole Word Masking BERT) model suitable for Chinese text tasks was used as the baseline model of our experiment. The experiment is mainly for "Text-level Chinese text classification tasks" are improved, which mainly combines Tapt (Task-Adaptive Pretraining) and "Multi-Sample Dropout method" to improve the model, and compare the experimental results, experimental data sets and model scoring standards Both are consistent with the official WWMBERT model using Accuracy as the scoring standard. The official WWMBERT model uses the maximum and average values of multiple experimental results as the experimental scores. The development set was 97.70% (97.50%) on the "text-level Chinese text classification task". and 97.70% (97.50%) of the test set. After comparing the results of the experiments in this paper, the development set increased by 0.35% (0.5%) and the test set increased by 0.31% (0.48%). The original baseline model has been significantly improved.

Keywords