CMDNet: 클릭 가능한 모바일 화면 객체 탐지를 위한 싱글 샷 아키텍처

조민석*, 한성수**, 정창성*
*고려대학교 전기전자공학과
**강원대학교 자유전공학부
jms0923@korea.ac.kr, sshan1@kangwon.ac.kr, csjeong@korea.ac.kr

CMDNet: Single Shot Architecture for Clickable Mobile Screen Object Detection

Min-Seok Jo*, Seong-Soo Han**, Chang-Sung Jeong*
*Dept. of Electrical and Engineering, Korea University
**Dept. of Division of Liberal Studies, Kangwon National University

요 약

모바일 디바이스 화면에 대하여 클릭 가능한 객체를 인식하기 위한 Object detection network architecture 를 제안한다. DSSD 를 Baseline 으로 SE block 이 추가된 Backbone network 와 SSD layer, FPN 구조를 사용한다. 기존의 1:1 비율의 네트워크의 Input resolution 을 모바일 화면과 유사한 1:2 비율로 변경하여 효율적으로 피처를 추출한다. 또한 해당 모델을 학습하기 위한 효율적인 데이터셋을 구축한다. 모바일 화면에서 클릭 가능한 객체를 기준으로 데이터를 수집하여 총 24,937 개의 Annotation data 를 Text, Image, Button, Region 등 8 개의 카테고리로 세분화하였다.

1. 서론

기술 발전의 속도가 나날이 증가함에 따라 신제품 의 개발 및 출시가 매우 짧아졌다. 이에 따라 제품을 정확하고 빠르게 테스트하는 기술이 전자제품 시장에 서의 경쟁력을 나타내고 있다. 또한, 제품의 종류와 숫자가 크게 증가해서 다양한 제품을 추가구현 없이 테스트할 수 있어야한다. 현재 모바일 기반의 제품을 테스트할 때는 Agent 를 기반으로 테스트한다. 그래 서 같은 어플리케이션일지라도 디바이스 마다 다른 테스트 스크립트를 작성하여 개별로 테스트해야 한다. 이는 디바이스 의존도가 굉장히 높다. 이러한 문제는 Agent 를 설치를 하지 않고 Deviceindependent 하게 Test Case 들을 생성하고자 하는 요 구로 이어진다. 따라서, 이미지나 영상을 활용해서 Test 를 진행하는 AI 기반의 Test Case 를 찾고 분류 하는 특정 Domain 에 대한 기술이 필요하다. 본 논문 에서는 이러한 문제를 해결하기 위한 Object detection 모델인 Clickable Mobile Screen 해당 Detection Network(CMDNet)를 소개한다. Architecture 는 모바일 스크린 이미지를 대상으로 설계하였다. 기존 모델의 Input resolution 비율인 1:1 을 모바일 스크린 이미지 비율과 유사한 Width,

Height 1:2 의 비율로 변경하여 이미지의 변형에서 오는 피처의 손실과 변이를 최소화하였다. 넓은 범위와 초고해상도를 가진 모바일 스크린 이미지를 커버하기 위해 다양한 해상도에서 인식이 가능하도록 구성하였다. 그 과정에서 해상도, 시간, 정확도면에서 효율적인 트레이드 오프 관계를 도출하였다. CMDNet은 모바일 스크린 이미지에 대해 10.2 FPS 가 나왔으며, 86.5 Mean Average precision(mAP)를 보였다.

2. 관련 연구

SSD[1]는 기존 Yolo[2]보다 향상된 속도와 mAP 를 얻었지만 작은 물체에 대한 성능은 다소 떨어진다. 이를 향상하기 위한 모델이 DSSD[3]이다. 기존의 SSD의 피처 추출에 사용되었던 VGG[4]를 Resnet[5]기반의 Residual-101로 교체하여 모델의 속도를 향상시켰다. 또한 Deconvolution 연산을 추가함으로써, 속도를 상대적으로 유지하면서 작은 객체들에 대하여탐지 성능을 높였다.

2.1 Deconvolution Module

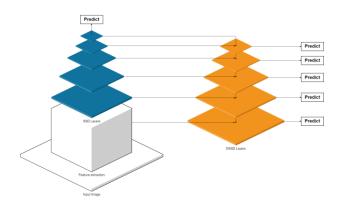
Deconvolution module 에서는 크기에 불변한 Highcontext 정보들을 효율적으로 활용하기 위해, 비대칭 의 Hourglass[6]구조를 활용하였다. 또한, 대칭의 구조를 갖게 되면 추론시간이 두배로 늘어나기 때문에 비대칭 구조를 채택했다. Deconvolution module 의두개의 인풋을 합치는 연산에서 Element-wise product 연산을 사용하였다.

2.2 Prediction Module

Prediction module 의 경우 Residual block 에서 Skip connection 에 한번의 Convolution layer 를 추가함으로써 기존 Residual block 보다 향상된 성능의 block 을 도출하였다. 테스트 시에는, 배치 정규화과정을 제거함으로써 기존 SSD 대비 테스트 시간을 1.2 에서 1.5 배 줄였다.

3. Clickable Mobile Detection Network(CMDNet)

3.1 아키텍처



(그림 1) CMDNet Architecture

CMDNet 의 전체적인 구조는 (그림 1)과 같다. SSD 와 FPN[7]구조를 기본으로 한다. 크게, Backbone network 와 직접적인 결과를 도출하는 Header, Backbone 과 Header 를 잇는 Neck 으로 나눌 수 있다. Backbone network 는 SENet[8]을 사용하여 기존 DSSD의 Resnet 대비 오버헤드의 증가 없이 중요한 피처를 추출하였다. Backbone network 를 통해 추출한 피처를 SSD layers 를 통해 Header 로 연결한다. 이때 FPN형태를 이용하여 스테이지 별로 추출한 피처를 Deconvolution module 을 통해 동일한 채널수로 맞춰준다. Header 는 Prediction module 을 사용하여 Localization과 Classification을 수행한다.

기존 대부분의 Network architecture 는 Width 와 Height 의 비율이 1:1을 크게 벗어나지 않는다. 하지만 모바일 화면의 경우 대부분의 1:2 의 비율을 가지고 있으며 해상도가 굉장히 높다. 해당 문제를 해결하기 위해 모델의 인풋 해상도를 1:2 의 비율로 정의하였다.

3.2 구현 세부사항

Ground Truth(GT) box 와 Intersection Over Union(IoU) 값이 임계 값(e.g. 0.5) 이상인 Predicted anchor box 만 학습에 사용하였다. Loss 함수는 Regression loss 와 Classification loss 두 개의 Loss 함수를 합쳐서 사용했다. Regression loss 는 Smooth L1 을 사용하였으며, Classification loss 는 Cross entropy를 사용했다.

캡쳐 된 모바일 스크린 이미지는 카메라로 찍은 데이터와는 달리 데이터셋 내부의 객체 하나하나가 흔들리거나 휘는 등 크게 변이될 가능성이 작다. 그래서 Random expansion augmentation trick 은 사용하지 않았다. 대신에 Horizontal flip 과 Vertical flip 을 적용하고 색상, 채도, 명도를 랜덤하게 변경하여 데이터셋의 일반성을 강화했다.

4. 실험

모바일 화면 데이터셋을 구성하여 4 장에서 제안한 모델을 실험하였다. 예측한 객체의 좌표와 GT box 를 기준으로 mAP 을 지표로 사용하였다. Baseline 으로 DSSD 모델을 사용하여 CMDNet 과 비교하였다. 모델의 속도를 비교하기 위해 FPS를 사용하였다.

4.1 데이터셋

모바일 디바이스의 화면을 대상으로 데이터셋을 구축하였다. 다양한 해상도를 가진 디바이스들로 데이터 수집이 이루어졌으며 다수의 어플리케이션 화면을 대상으로 수집하였다. 총 1,261 장의 이미지에 대하여 24,937 개의 Annotation data 를 수집하였다. 전체데이터 셋 중에서 371 장의 7,045 개의 Annotation data 는 Validation set 으로, 나머지 890 장의 17,892 개의 Annotation data 는 Training set 으로 나누었다. Class 는 클릭 가능한 객체를 기준으로 선정하였다. Text, Image, Button, Region, Status bar, Navigation bar, Edit text 의 7 개 Class 를 두었다.데이터셋 규격은 VOC[9]규격을 따랐다. 각 Class 별 Annotation data 는 <표 1>과 같다.

<표 1> 클래스별 Annotation data ass Number of Annotation

Class	Number of Annotation data			
Text	8,462			
Image	7705			
Button	2,165			
Region	3,563			
Status bar	1,228			
Navigation bar	721			
Edit text	1,093			

Text Class 가 8,462 개로 가장 많았으며, Navigation bar 가 721 개로 가장 적었다. 데이터셋의 예시는 (그림 2)와 같다.

4.2 트레이닝

구축한 데이터 셋 중에서 Training set 을 학습하였다. Multi-scale training 은 사용하지 않았다. 클래스 불균형 문제로 인한 False negative 문제를 해결하기 위해 Hard negative mining 을 사용하였다. GTX 2080Ti GPU를 사용하여 Loss 가 0.1 이하로 떨어질 때까지 학습하였다. 0.001 의 Initial learning rate 에 0.9 의 Momentum 을 사용하였다. 또한, Overfitting 을 피하기 위해 Weight decay 는 0.9 로설정하였다.

(그림 2) Dataset GT

4.3 실험 결과

실험 결과는 <표 2>와 같다. Baseline 인 DSSD-512는 Resnet-101을 Backbone 으로 사용하였고 512 x 512의 1:1비율의 Input resolution을 가지고 있다. mAP는 43.0이며 FPS는 12.9이다. CMDNet-512는 512 x 1024의 1:2비율의 이미지를 Input resolution으로 가진다. Backbone network로 SENet-101을 사용하였다. mAP는 68.4로 DSSD-512와비교하여 59%상승하였다. FPS는 10.2로 초당 2 장정도느린속도를 보였다. CMDNet-1080은 1080 x 1920의 Input resolution을 가지고 있다. CMDNet-512와마찬가지로 SENet-101을 Backbone network로 가진다. mAP는 86.5로 DSSD-512에비하여 101%, CMDNet-512에비하여 26.4%증가하였다. FPS는 DSSD-512에비하여 26.4%증가하였다. FPS는 DSSD-512에비하여 25명 3.4하락하였으며, CMDNet-512에비하여 0.7떨어졌다. Inference 결과는 (그림 3)과 같다.

(그림 3) Inference results

<표 2> Baseline 모델과의 비교

Method	Backbone	mAP	FPS	Input resolution
DSSD	Resnet-	43.0	12.9	~ 512 x
512	101	(Base)	(Base)	512
CMDNet	SENet-	68.4	10.2	512 x 1024
512	101	(+59.0%)	(-2.7)	312 X 1024
CMDNet	SENet-	86.5	9.5	1080 x
1080	101	(+101.1%)	(-3.4)	1920

5. 결론

본 논문에서는 모바일 디바이스의 화면에 대하여 클릭가능한 객체를 찾기 위한 Object detection network architecture 를 제안한다. 기존의 Backbone 인 Resnet 을 SENet 으로 교체하고, SSD layers 를 통해 FPN 구조를 쌓아 Header 로 연결하였다. 또한 해당모델을 학습하기 위한 모바일 화면 데이터셋을 구축하였다. 데이터셋은 8 개의 클래스로 구분하였으며, 24,937 개의 Annotation data 를 수집하였다. 제안한모델과 구축한 데이터셋을 이용하여 실험을 진행하였고 기존 DSSD 모델에 비하여 향상된 성능을 입증하였다.

이 논문은 2021 년도 4 단계 BK21 사업에 의하여 지원 되었음.

참고문헌

- [1] LIU, Wei, et al. Ssd: Single shot multibox detector. In: European conference on computer vision. Springer, Cham, 2016. pp. 21-37.
- [2] REDMON, Joseph, et al. You only look once: Unified, real-time object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition. Las Vegas, 2016. pp. 779-788.
- [3] FU, Cheng-Yang, et al. Dssd: Deconvolutional single shot detector. arXiv:1701.06659, 2017.
- [4] SIMONYAN, Karen; ZISSERMAN, Andrew. Very deep convolutional networks for large-scale image recognition. 3rd International Conference on Learning Representations, ICLR 2015, San Diego, 2015. pp. 7-9.
- [5] HE, Kaiming, et al. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. pp. 770-778.
- [6] NEWELL, Alejandro; YANG, Kaiyu; DENG, Jia. Stacked hourglass networks for human pose estimation. In: European conference on computer vision. Springer, Cham, 2016. pp. 483-499.
- [7] LIN, Tsung-Yi, et al. Feature pyramid networks for object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017. pp. 2117-

2125.

- [8] HU, Jie; SHEN, Li; SUN, Gang. Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2018. pp. 7132-7141.
- [9] EVERINGHAM, Mark, et al. The pascal visual object classes (voc) challenge. International journal of computer vision, 88.2: pp. 303-338, 2010.