DOI QR코드

DOI QR Code

Development of a Resignation Prediction Model using HR Data

HR 데이터 기반의 퇴사 예측 모델 개발

  • PARK, YUNJUNG (Graduate School of Computer & Information Technology, Korea University) ;
  • Lee, Do-Gil (Research Institute of Korean Studies)
  • 박연정 (고려대학교 컴퓨터정보통신대학원 빅데이터융합과) ;
  • 이도길 (고려대학교 민족문화연구원)
  • Published : 2021.05.12

Abstract

대부분의 기업에서는 우수한 인적 자원의 유출을 방지하기 위해 직원들이 이직 및 퇴사하는 이유를 연구한다. 이에 기업은 직원이 퇴사하기 전에 면담을 하거나 설문조사를 통해서 연구에 필요한 데이터를 얻는다. 하지만 설문조사에서는 직원들이 직장 생활을 하는 데에 불리할 수도 있는 의견을 드러내려고 하지 않아 정확한 결과를 얻기 힘든 것이 현실이다. 한편, 한국노동연구원에서 발표한 자료에 따르면 기업이 요구하는 최소 학력 수준과 직원의 학력 수준 간의 차이가 클수록 이직 경향이 커진다. 따라서 본 연구에서는 한국노동연구원의 자료에 착안하여, 직원이 가지고 있는 객관적 데이터인 전공, 교육수준, 재직 중인 회사 유형 등의 데이터를 기반으로 직원의 퇴사 여부를 예측하고자 한다. 퇴사 예측 모델을 생성하기 위해 Decision Tree, XGBoost, kNN, SVM을 활용하였으며 각각의 성능을 비교했다. 이 결과, 지금까지 설문조사로 진행되었던 연구에서 파악하지 못한 다양한 요인을 알아낼 수 있었다. 이를 통해 기업이 퇴사 예측 모델을 이용하여 직원이 퇴사하기 전에 미리 이를 인지하고 방지하는 데에 도움을 줄 수 있을 것으로 예상된다.

Keywords