

ABSTRACT

Scheduling the movements of trains in the modern railway system is becoming essential and

important. Swiss Federal Railway Company (SBB) and machine learning researchers began
collaborating to make a simulation environment and held a Flatland challenge. In this paper, the
methodologies of the winners of this competition are analyzed to achieve insight and research trends.
This problem is similar to the Multi-Agent Path Finding (MAPF) and Vehicle Rescheduling Problem
(VRSP). The potential of the attempted methods from the Flatland challenge to be applied to various
transportation systems as well as railways is discussed.

1. INTRODUCTION

In the real world, there is traffic everywhere; on roads, on
railways, and on subways. In Switzerland, there are more than
10,000 trains travelling with 1.25million passengers and
200,000 tons of freight to various destinations. The research
group at Swiss Federal Railway Company (SBB) developed a
2-dimensional railway traffic simulator called Flatland [1]
which consists of physics simulation and traffic management
system (TMS) [2] in an attempt to develop an intelligent way
of controlling this massive train traffic. This train traffic
control problem is a version of the vehicle rescheduling
problem (VRSP) [3] where the vehicle routes are replanned or
rescheduled due to the dynamic change in the environment
(e.g., accidents, malfunction).

To this end, a public competition called the Flatland
challenge was held on AIcrowd [4]. Participants of this
challenge attempted various techniques in the area of
Operation Research (OR) [5], Reinforcement Learning (RL),
or combinations of both OR and RL. The purpose of the
challenge is to guide all trains to arrive at their target
destination in the total minimum amount of travel time. The
challenge was held in 2019 and 2020. It is becoming an annual
event where the 2021 challenge will be held this year.
Techniques from OR were mainly used in the first year, and
for the second year, RL methods were encouraged. We expect
that novel learning methods will be attempted this year. In this
paper, we briefly introduce the Flatland environment, the
Flatland problem, baseline methods, and analyze the winning
methods in 2019 and 2020.

1 Corresponding author

2. FLATLAND

2.1 Flatland Environment

(Figure 1). Visualization of a Flatland simulation
environment with three train stations and ten trains

Flatland [1] is a cell-oriented 2-dimensional grid and

discrete-time simulation environment. Flatland generates
various fully connected railways with different target stations
and schedules for trains. Only one train can occupy a railway
tile and the type of tile determines the possible movements of
a train. A train can stop or move in up to two directions,
depends on the underlying tile. The problem to solve in this
environment is to find the optimal policy for all trains to reach
their target station as fast as possible. Therefore, it is natural
to specify this environment as a cooperative multi-agent

The Analysis of Flatland Challenge Winners’
Multi-agent Methodologies

BumKyu Choi, Jong-Kook Kim†1

 Dept. of Electric and Electronics Engineering, Korea University
qjarb3411@korea.ac.kr, jongkook@korea.ac.kr

- 369 -

2021 춘계학술발표대회 논문집 제28권 제1호 (2021. 5)

system (MAS) [6] and Multi-Agent Path Finding Problem
(MAPF) [7] with trains as agents. Flatland simulates the
vehicle rescheduling problem (VRSP) [2] by setting a
malfunction rate, determining the probability of
malfunctioning at each step for trains. One of the challenging
situations in Flatland is a deadlock. It happens when two or
more trains are trying to move in the opposite direction and
toward each other in a single railway. Deadlock becomes a
crucial issue as the scale of the environment increase.
Therefore, avoiding deadlock is the critical problem of
Flatland.

2.2 Evaluation Metric

Each train agent receives a combined return consisting of a
combination of local reward 𝑟𝑟𝑙𝑙𝑖𝑖 and a global reward signal 𝑟𝑟𝑔𝑔
for evaluation. A penalty signal 𝑟𝑟𝑝𝑝𝑖𝑖 is received if the move is
illegal, but set to 0 in the competition. If all agents have
reached their destination at time step t, a global reward 𝑟𝑟𝑔𝑔 =
1 is given to every agent. Both 𝛼𝛼 and 𝛽𝛽 are set to 1.0

𝑟𝑟𝑖𝑖(𝑡𝑡) = 𝛼𝛼𝑟𝑟𝑙𝑙𝑖𝑖(𝑡𝑡) + 𝛽𝛽𝑟𝑟𝑔𝑔(𝑡𝑡) + 𝑟𝑟𝑝𝑝𝑖𝑖(𝑡𝑡) ∈ [−α − 2, β] (1)

𝑔𝑔𝑖𝑖 = ∑ 𝑟𝑟𝑖𝑖(𝑡𝑡)𝑇𝑇
𝑡𝑡=1 (2)

𝑆𝑆 = ∑ ∑ 𝑔𝑔𝑖𝑖
𝑗𝑗𝑀𝑀𝑗𝑗

𝑖𝑖=0
𝑁𝑁
𝑗𝑗=0 (3)

 S𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑁𝑁
𝑆𝑆 = 1

𝑁𝑁
∑ ∑ 𝑔𝑔𝑖𝑖

𝑗𝑗𝑀𝑀𝑗𝑗
𝑖𝑖=0

𝑁𝑁
𝑗𝑗=0 (4)

 S𝑇𝑇𝑇𝑇𝑇𝑇 = ∑ (∑ 𝑔𝑔𝑖𝑖
𝑗𝑗 + 1.0)

𝑀𝑀𝑗𝑗
𝑖𝑖=0

𝑁𝑁
𝑗𝑗=0 (5)

𝑔𝑔𝑖𝑖 is a cumulative return of each agent. 𝑆𝑆 is the accumulated
total normalized reward in total N environments with 𝑀𝑀𝑖𝑖
agents for each configuration. For evaluation, in the challenge,
it is worth noting that evaluation metrics are slightly different
on each round and each year. The mean normalized return
score for all evaluation episodes S𝑀𝑀𝑀𝑀𝑀𝑀 , and the total
normalized return score S𝑇𝑇𝑇𝑇𝑇𝑇 ,which is added +1.0 value for
each episode to make the value positive, are both used.
Besides, the rate of trains that has arrived is provided as an
auxiliary evaluation metric.

3. BASELINE METHODS

The Flatland challenge documentation [8] provides several
baseline methods. These methods are for the 2020 challenge.
In this section, we briefly explain Reinforcement Learning
(RL) methods and Technical methods.

i) RL methods

There are from simple single-agent learning algorithm to
RLlib framework [9] based algorithm.

• Dueling Double DQN (DDDQN)

Dueling Double Deep Q-Network (DDDQN) is the value-
based algorithm which is the combination of Double Q-
Network (DDQN) [10] which has a separate target network,

and dueling network [11].
• PPO/ Centralized Critic PPO (CCPPO)

Proximal Policy Optimization (PPO) [12] is an actor-critical
algorithm and Centralized Critic PPO (CCPPO) is the
combination of PPO and Transformer [13] which is for
attention mechanism.
• Imitation Learning: MARWIL, Ape-X DQFD

For bootstrapping the RL process and improvement with
well-performing previous OR methods, the idea of imitation
learning which imitates the already sufficient is proposed.
Pure imitation learning MARWIL [14] and Hybrid or Mixed
Learning Ape-X DQFD [15] are categorized in imitation
learning.

ⅱ) Technical methods

There are some technical approaches for the Flatland
observation and agents.

• Combined Observation

 Combined Observation is the way of combining multiple
observations and can be applied with any algorithms.
• Frame Skipping and Action Masking

Frame Skipping and Action Masking are technical methods
to filter out unnecessary cells or actions at specific time steps
when deciding the system’s efficiency.

4. PROPOSED METHODS

In this section, we analyze the winners’ methodologies for
each of the two years (2019, 2020). The competition consists
of three rounds (warm-up, round-1, and round-2). The one
who wins in the second round becomes the final winner.
Analysis are based on winners’ presentation 2019 (AMLD
conference [16]), and 2020 (NeurIPS conference [17]).

∎ 2019 CHALLENGE
Challenge in 2019 top solutions mainly used analytical

method Operation Research (OR) [5]. OR method has been
used as an approach for the vehicle rescheduling problem
(VRSP) for decades. Therefore, it was natural to apply OR to
the Flatland environment in the first 2019 challenge. Done rate
and normalized reward were used as evaluation metrics and
the done rate was a priority metric for ranking.

• First Place: Mugurelionut

Done rate: 0.990
Normalized reward: -11.320

There are two main components of this solution. First is

(re)generating agent paths. The second is updating agent paths
to avoid deadlock after malfunction occurring. A time-
expanded graph for each simulation environment is used and
each agent should have a feasible path on it previously. The
operation runs in parallel with multiple threads each of which
generates the permutation of the agents. A new possibly
shortest path is found by using a variant of A* pathfinding

- 370 -

2021 춘계학술발표대회 논문집 제28권 제1호 (2021. 5)

methods. If the best set is found, start the next run with it as
the initial set. As a way of scoring a set of paths, they set the
main objective as the number of agents reaching the
destination. For Tie-breaking, they use an equation (6) which
is a summation of T for all agents. T is time to reach the
destination and E is the hyperparameter (from 0.25 to 4) and
set to 1 which performs best.

∑ 𝑇𝑇𝑁𝑁
𝑖𝑖=1

𝐸𝐸 (6)

With detailed simulation settings and rules, they apply the
shortest path algorithm for all single agents.

• Second Place: CkUa(Team)

Done rate: 0.960
Normalized reward: -14.620

This team approached with graph-based path search. They

represent every railroad cell as nodes and possible movement
as edges. In the beginning, minimal possible path to every
target from every cell, and orientation pair are pre-calculated.
At every time step, whether there are any malfunctions or not
is checked. When it occurs, reschedule all started trains, or
partially reschedule if it is not entirely available. For non-
started trains, keep checking a good path. Similar to the first-
place team solution, a sequential space-time data structure is
used. With this structure, new trains can check if some cells
will be available at the exact time step that is crucial to multi-
agent environments. To find trains’ path, they use the A*
algorithm with a heuristic function (7).

𝑓𝑓(x) = 𝑔𝑔(𝑥𝑥) + ℎ(𝑥𝑥) (7)

𝑔𝑔(x) is a sum of waiting time and found travel time in

seconds to the current vertex. ℎ(𝑥𝑥) is minimal possible travel
time to the target.

We omitted other participants because their methods similar

to the above methods.

∎ 2020 CHALLENGE
Leaderboard tracks are separated as RL Track and Non-RL

Track in the 2020 challenge. Although RL Track participants
were expected to achieve relatively low performance
compared to Non-RL, the competition host encouraged the use
of reinforcement learning and awarded separately due to its
potential of general applicability to unseen problem instances.
In contrast to the 2019 challenge, the total normalized return
was used as the priority evaluation metric.

A. Non-RL Track (OR)

• First Place: An_Old_Driver(Team)
 Total reward: 297.507

 Done rate: 0.986

They used a combined approach to the planning method.
Combination of Prioritized Planning (PP) [18], Large
Neighborhood Search (LNS), Minimum Communication

Policy (MCP) [19], and Partial Re-planning is the solution.
First, they planned paths for all agents with the PP method. PP
plans the path sequentially from the first agent to the last agent.
The shortest paths are planned by an algorithm called Safe
Interval Path Planning (SIPP) [20]. To improve the quality of
the resulting initial solution, re-plan the paths of the agents in
the neighborhood. The neighborhood is classified by three
criteria (Station-based neighbor: have the same target,
Intersection-based neighbor: pass through the same
intersection, Agent-based neighbor: have the longest path with
blocking agent). To handle deadlock caused by malfunctions,
MCP is used. MCP prevents deadlocks by keeping the
ordering of the agents to visit each location. Partial re-
planning methods are finally added for more effective
processing. After collecting the intersections that the
malfunction agent is going to traverse, Re-plan the paths of the
agents who are going to traverses these intersections. The
combination of the above methods suitable for environmental
characteristics ensured high performance.

B. RL Track
On the RL Track, winners focused on the main factors of

reinforcement learning, such as the algorithm itself or
representation of observation space and reward shaping.

 • First Place: JBR_HSE(Team)
 Total reward: 214.15
 Done rate: 0.785

For training the multi-agent, they used both global
observation and tree observation, similar to provided tree
observation in the baseline documentation [8]. From the
observations, common and local tree features are extracted.
Agents move forward and determine the action only at the
intersections. If the agent is in a deadlock, the episode ends.
The reward is shaped with three components (8). Δ𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 is
the shortest distance to the target, 𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
are binary indicators for the agent’s succeed and deadlock.
α, β, γ the hyperparameters are set to 0.01, 10, -5.

r = α ∗ Δ𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛽𝛽 ∗ 𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝛾𝛾 ∗ 𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (8)

With an actor-critic algorithm, Proximal Policy

Gradient(PPO) [11], agents are trained. Both actor and critic
architecture are separated into Two (Common Features Net
and Tree Features Net) and then combine via a fully
connected(FC) layer. It is worth noting that there are Action
block and Communication block in the Actor architecture.
Passing the output from the FC layer and from the Multi-head
attention layer [13] which contains features of neighbors,
Action block outputs action distribution. Meanwhile,
inputting output from FC layer to Communication block
generates outcome message vector of an agent. The critic
architecture, same with basic PPO, outputs scalar value
function. Finally, to avoid deadlock, they trained and used the
Scheduler model which estimates the probability the train will

- 371 -

2021 춘계학술발표대회 논문집 제28권 제1호 (2021. 5)

reach its target successfully. Good policy is learned by training
the scheduler iteratively with trained and fixed PPO agent.

 • Second Place: Ai-team-flatland(Team)

 Total reward: 181.497
 Done rate: 0.881

Unlike the above first-place team, this team’s main focus is

on representing the environment, rather than the RL algorithm
itself. They represent the environment with a simple cell graph
which represents only the intersection node and edge
representing connections. With the graph representation of the
environment, off-policy and on-policy baseline RL models (In
section 3) have experimented. To input the observation vector,
the priority, and the conflict-info features are mainly used. In
the learning process, they designed the reward in detail. (if
agent is in the target: +10, deadlock: -10, not following
priority: -5, missing the path: -3, stopping on switch: -3,
stopping: -1, regular step: -0.5, avoided deadlock: -0.35). A
notable fact is that they achieved a higher done rate than the
first-place team.

Participants were usually unable to focus on all environment

elements and instead focused on designing the algorithm
model or environment itself. However, it was generally agreed
that the efficiency and computational speed of the
environment should be upgraded (e.g., 2019 first-place winner
commented that converting Python code to C++ can be
considered). To optimize in more large-scale maps and general
applicability, using graphical methods including GNN [21]
with RL approaches are expected to be the key methods for
the 2021 challenge and the next.

5. CONCLUSION

In this paper, we introduced the railway simulation
environment called Flatland and the Flatland challenge.
Various methodologies from Operation Research (OR) and
Reinforcement Learning (RL) are introduced and discussed.
The analysis of the winners’ methods will help guide
researchers to the solutions for Multi-Agent Path Finding
(MAPF) and Vehicle Rescheduling Problem (VRSP) and can
be helpful to (potential) participants of the challenge.

REFERENCES.
[1] Mohanty, Sharada, et al. "Flatland-RL: Multi-Agent

Reinforcement Learning on Trains." arXiv preprint
arXiv:2012.05893 (2020).

[2] De Souza, Allan M., et al. "Traffic management
systems: A classification, review, challenges, and future
perspectives." International Journal of Distributed
Sensor Networks 13.4 (2017): 1550147716683612

[3] Li, Jing‐Quan, Pitu B. Mirchandani, and Denis
Borenstein. "The vehicle rescheduling problem: Model
and algorithms." Networks: An International
Journal 50.3 (2007): 211-229.

[4] Links: https://www.aicrowd.com
[5] Frederick, S., and Gerald LIEBERMAN. "Introduction

to Operation research." (2001).
[6] Panait, Liviu, and Sean Luke. "Cooperative multi-agent

learning: The state of the art." Autonomous agents and
multi-agent systems 11.3 (2005): 387-434.

[7] Stern, Roni, et al. "Multi-agent pathfinding: Definitions,
variants, and benchmarks." arXiv preprint
arXiv:1906.08291 (2019).

[8] Links: https://flatland.aicrowd.com/intro.html
[9] Liang, Eric, et al. "RLlib: Abstractions for distributed

reinforcement learning." International Conference on
Machine Learning. PMLR, 2018.

[10] Van Hasselt, Hado, Arthur Guez, and David Silver.
"Deep reinforcement learning with double q-
learning." Proceedings of the AAAI Conference on
Artificial Intelligence. Vol. 30. No. 1. 2016.

[11] Wang, Ziyu, et al. "Dueling network architectures for
deep reinforcement learning." International conference
on machine learning. PMLR, 2016.

[12] Schulman, John, et al. "Proximal policy optimization
algorithms." arXiv preprint arXiv:1707.06347 (2017).

[13] Vaswani, Ashish, et al. "Attention is all you need." arXiv
preprint arXiv:1706.03762 (2017).

[14] Wang, Qing, et al. "Exponentially Weighted Imitation
Learning for Batched Historical Data." NeurIPS. 2018.

[15] Pohlen, Tobias, et al. "Observe and look further:
Achieving consistent performance on atari." arXiv
preprint arXiv:1805.11593 (2018).

[16] Links: https://www.youtube.com/watch?v=rGzXsOC7qXg
[17] Links: https://www.youtube.com/watch?v=wDKbL7CuHpQ
[18] Silver, David. "Cooperative Pathfinding." Aiide 1

(2005): 117-122.
[19] Ma, Hang, TK Satish Kumar, and Sven Koenig. "Multi-

agent path finding with delay probabilities.
" Proceedings of the AAAI Conference on Artificial
Intelligence. Vol. 31. No. 1. 2017.

[20] Phillips, Mike, and Maxim Likhachev. "Sipp: Safe
interval path planning for dynamic environments.
" 2011 IEEE International Conference on Robotics and
Automation. IEEE, 2011

[21] Battaglia, Peter W., et al. "Relational inductive biases,
deep learning, and graph networks." arXiv preprint
arXiv:1806.01261 (2018).

- 372 -

2021 춘계학술발표대회 논문집 제28권 제1호 (2021. 5)

