
 
 

  

 
ABSTRACT 

 
Scheduling the movements of trains in the modern railway system is becoming essential and 

important. Swiss Federal Railway Company (SBB) and machine learning researchers began 
collaborating to make a simulation environment and held a Flatland challenge. In this paper, the 
methodologies of the winners of this competition are analyzed to achieve insight and research trends. 
This problem is similar to the Multi-Agent Path Finding (MAPF) and Vehicle Rescheduling Problem 
(VRSP). The potential of the attempted methods from the Flatland challenge to be applied to various 
transportation systems as well as railways is discussed. 

 
 

1. INTRODUCTION 

In the real world, there is traffic everywhere; on roads, on 
railways, and on subways. In Switzerland, there are more than 
10,000 trains travelling with 1.25million passengers and 
200,000 tons of freight to various destinations. The research 
group at Swiss Federal Railway Company (SBB) developed a 
2-dimensional railway traffic simulator called Flatland [1] 
which consists of physics simulation and traffic management 
system (TMS) [2] in an attempt to develop an intelligent way 
of controlling this massive train traffic. This train traffic 
control problem is a version of the vehicle rescheduling 
problem (VRSP) [3] where the vehicle routes are replanned or 
rescheduled due to the dynamic change in the environment 
(e.g., accidents, malfunction).  

To this end, a public competition called the Flatland 
challenge was held on AIcrowd [4]. Participants of this 
challenge attempted various techniques in the area of 
Operation Research (OR) [5], Reinforcement Learning (RL), 
or combinations of both OR and RL. The purpose of the 
challenge is to guide all trains to arrive at their target 
destination in the total minimum amount of travel time. The 
challenge was held in 2019 and 2020. It is becoming an annual 
event where the 2021 challenge will be held this year. 
Techniques from OR were mainly used in the first year, and 
for the second year, RL methods were encouraged. We expect 
that novel learning methods will be attempted this year. In this 
paper, we briefly introduce the Flatland environment, the 
Flatland problem, baseline methods, and analyze the winning 
methods in 2019 and 2020. 
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2. FLATLAND  

2.1 Flatland Environment 

  
(Figure 1). Visualization of a Flatland simulation 
environment with three train stations and ten trains 
 
Flatland [1] is a cell-oriented 2-dimensional grid and 

discrete-time simulation environment. Flatland generates 
various fully connected railways with different target stations 
and schedules for trains. Only one train can occupy a railway 
tile and the type of tile determines the possible movements of 
a train. A train can stop or move in up to two directions, 
depends on the underlying tile. The problem to solve in this 
environment is to find the optimal policy for all trains to reach 
their target station as fast as possible. Therefore, it is natural 
to specify this environment as a cooperative multi-agent 
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system (MAS) [6] and Multi-Agent Path Finding Problem 
(MAPF) [7] with trains as agents. Flatland simulates the 
vehicle rescheduling problem (VRSP) [2] by setting a 
malfunction rate, determining the probability of 
malfunctioning at each step for trains. One of the challenging 
situations in Flatland is a deadlock. It happens when two or 
more trains are trying to move in the opposite direction and 
toward each other in a single railway. Deadlock becomes a 
crucial issue as the scale of the environment increase. 
Therefore, avoiding deadlock is the critical problem of 
Flatland. 
 

2.2 Evaluation Metric 

Each train agent receives a combined return consisting of a 
combination of local reward 𝑟𝑟𝑙𝑙𝑖𝑖  and a global reward signal 𝑟𝑟𝑔𝑔 
for evaluation. A penalty signal 𝑟𝑟𝑝𝑝𝑖𝑖  is received if the move is 
illegal, but set to 0 in the competition. If all agents have 
reached their destination at time step t, a global reward 𝑟𝑟𝑔𝑔 =
1 is given to every agent. Both 𝛼𝛼 and 𝛽𝛽 are set to 1.0 

  
𝑟𝑟𝑖𝑖(𝑡𝑡) =  𝛼𝛼𝑟𝑟𝑙𝑙𝑖𝑖(𝑡𝑡) + 𝛽𝛽𝑟𝑟𝑔𝑔(𝑡𝑡) + 𝑟𝑟𝑝𝑝𝑖𝑖(𝑡𝑡) ∈ [−α − 2, β]  (1) 

𝑔𝑔𝑖𝑖 = ∑ 𝑟𝑟𝑖𝑖(𝑡𝑡)𝑇𝑇
𝑡𝑡=1              (2) 

𝑆𝑆 =  ∑ ∑ 𝑔𝑔𝑖𝑖
𝑗𝑗𝑀𝑀𝑗𝑗
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𝑁𝑁
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      S𝑇𝑇𝑇𝑇𝑇𝑇 = ∑ ( ∑ 𝑔𝑔𝑖𝑖
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𝑔𝑔𝑖𝑖 is a cumulative return of each agent. 𝑆𝑆 is the accumulated 
total normalized reward in total N  environments with 𝑀𝑀𝑖𝑖 
agents for each configuration. For evaluation, in the challenge, 
it is worth noting that evaluation metrics are slightly different 
on each round and each year. The mean normalized return 
score for all evaluation episodes S𝑀𝑀𝑀𝑀𝑀𝑀 , and the total 
normalized return score S𝑇𝑇𝑇𝑇𝑇𝑇 ,which is added +1.0 value for 
each episode to make the value positive, are both used. 
Besides, the rate of trains that has arrived is provided as an 
auxiliary evaluation metric. 
 
3. BASELINE METHODS 

The Flatland challenge documentation [8] provides several 
baseline methods. These methods are for the 2020 challenge. 
In this section, we briefly explain Reinforcement Learning 
(RL) methods and Technical methods. 

 
i) RL methods 

There are from simple single-agent learning algorithm to 
RLlib framework [9] based algorithm. 

 
• Dueling Double DQN (DDDQN)  

Dueling Double Deep Q-Network (DDDQN) is the value-
based algorithm which is the combination of Double Q-
Network (DDQN) [10] which has a separate target network, 

and dueling network [11].  
• PPO/ Centralized Critic PPO (CCPPO) 

Proximal Policy Optimization (PPO) [12] is an actor-critical 
algorithm and Centralized Critic PPO (CCPPO) is the 
combination of PPO and Transformer [13] which is for 
attention mechanism. 
• Imitation Learning: MARWIL, Ape-X DQFD 

For bootstrapping the RL process and improvement with 
well-performing previous OR methods, the idea of imitation 
learning which imitates the already sufficient is proposed. 
Pure imitation learning MARWIL [14] and Hybrid or Mixed 
Learning Ape-X DQFD [15] are categorized in imitation 
learning.   
 
ⅱ) Technical methods 

There are some technical approaches for the Flatland 
observation and agents. 
 
• Combined Observation 

 Combined Observation is the way of combining multiple 
observations and can be applied with any algorithms. 
• Frame Skipping and Action Masking 

Frame Skipping and Action Masking are technical methods 
to filter out unnecessary cells or actions at specific time steps 
when deciding the system’s efficiency. 
 
4. PROPOSED METHODS 

In this section, we analyze the winners’ methodologies for 
each of the two years (2019, 2020). The competition consists 
of three rounds (warm-up, round-1, and round-2). The one 
who wins in the second round becomes the final winner. 
Analysis are based on winners’ presentation 2019 (AMLD 
conference [16]), and 2020 (NeurIPS conference [17]). 
 
∎ 2019 CHALLENGE 
Challenge in 2019 top solutions mainly used analytical 

method Operation Research (OR) [5]. OR method has been 
used as an approach for the vehicle rescheduling problem 
(VRSP) for decades. Therefore, it was natural to apply OR to 
the Flatland environment in the first 2019 challenge. Done rate 
and normalized reward were used as evaluation metrics and 
the done rate was a priority metric for ranking. 

 
• First Place: Mugurelionut 

Done rate: 0.990 
Normalized reward: -11.320 

 
There are two main components of this solution. First is 

(re)generating agent paths. The second is updating agent paths 
to avoid deadlock after malfunction occurring. A time-
expanded graph for each simulation environment is used and 
each agent should have a feasible path on it previously. The 
operation runs in parallel with multiple threads each of which 
generates the permutation of the agents. A new possibly 
shortest path is found by using a variant of A* pathfinding 
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methods. If the best set is found, start the next run with it as 
the initial set. As a way of scoring a set of paths, they set the 
main objective as the number of agents reaching the 
destination. For Tie-breaking, they use an equation (6) which 
is a summation of T for all agents. T  is time to reach the 
destination and E is the hyperparameter (from 0.25 to 4) and 
set to 1 which performs best.  

 
∑ 𝑇𝑇𝑁𝑁
𝑖𝑖=1

𝐸𝐸        (6) 
 

With detailed simulation settings and rules, they apply the 
shortest path algorithm for all single agents. 
 
• Second Place: CkUa(Team) 

Done rate: 0.960 
Normalized reward: -14.620 

 
This team approached with graph-based path search. They 

represent every railroad cell as nodes and possible movement 
as edges. In the beginning, minimal possible path to every 
target from every cell, and orientation pair are pre-calculated. 
At every time step, whether there are any malfunctions or not 
is checked. When it occurs, reschedule all started trains, or 
partially reschedule if it is not entirely available. For non-
started trains, keep checking a good path. Similar to the first-
place team solution, a sequential space-time data structure is 
used. With this structure, new trains can check if some cells 
will be available at the exact time step that is crucial to multi-
agent environments. To find trains’ path, they use the A* 
algorithm with a heuristic function (7). 

 
𝑓𝑓(x) = 𝑔𝑔(𝑥𝑥) + ℎ(𝑥𝑥)      (7) 

 
𝑔𝑔(x)  is a sum of waiting time and found travel time in 

seconds to the current vertex. ℎ(𝑥𝑥) is minimal possible travel 
time to the target. 

 
We omitted other participants because their methods similar 

to the above methods. 
 
∎ 2020 CHALLENGE  
Leaderboard tracks are separated as RL Track and Non-RL 

Track in the 2020 challenge. Although RL Track participants 
were expected to achieve relatively low performance 
compared to Non-RL, the competition host encouraged the use 
of reinforcement learning and awarded separately due to its 
potential of general applicability to unseen problem instances. 
In contrast to the 2019 challenge, the total normalized return 
was used as the priority evaluation metric. 
 

A. Non-RL Track (OR) 
 

• First Place: An_Old_Driver(Team) 
  Total reward: 297.507 

   Done rate: 0.986 
 

They used a combined approach to the planning method. 
Combination of Prioritized Planning (PP) [18], Large 
Neighborhood Search (LNS), Minimum Communication 

Policy (MCP) [19], and Partial Re-planning is the solution. 
First, they planned paths for all agents with the PP method. PP 
plans the path sequentially from the first agent to the last agent. 
The shortest paths are planned by an algorithm called Safe 
Interval Path Planning (SIPP) [20]. To improve the quality of 
the resulting initial solution, re-plan the paths of the agents in 
the neighborhood. The neighborhood is classified by three 
criteria (Station-based neighbor: have the same target, 
Intersection-based neighbor: pass through the same 
intersection, Agent-based neighbor: have the longest path with 
blocking agent). To handle deadlock caused by malfunctions, 
MCP is used. MCP prevents deadlocks by keeping the 
ordering of the agents to visit each location. Partial re-
planning methods are finally added for more effective 
processing. After collecting the intersections that the 
malfunction agent is going to traverse, Re-plan the paths of the 
agents who are going to traverses these intersections. The 
combination of the above methods suitable for environmental 
characteristics ensured high performance. 
 

B. RL Track 
On the RL Track, winners focused on the main factors of 

reinforcement learning, such as the algorithm itself or 
representation of observation space and reward shaping. 
 

 • First Place: JBR_HSE(Team) 
    Total reward: 214.15 
    Done rate: 0.785 
 

For training the multi-agent, they used both global 
observation and tree observation, similar to provided tree 
observation in the baseline documentation [8]. From the 
observations, common and local tree features are extracted. 
Agents move forward and determine the action only at the 
intersections. If the agent is in a deadlock, the episode ends. 
The reward is shaped with three components (8). Δ𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚  is 
the shortest distance to the target, 𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠   and 𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  
are binary indicators for the agent’s succeed and deadlock. 
α, β, γ the hyperparameters are set to 0.01, 10, -5. 

 
r = α ∗ Δ𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛽𝛽 ∗ 𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝛾𝛾 ∗ 𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑   (8) 

 
With an actor-critic algorithm, Proximal Policy 

Gradient(PPO) [11], agents are trained. Both actor and critic 
architecture are separated into Two (Common Features Net 
and Tree Features Net) and then combine via a fully 
connected(FC) layer. It is worth noting that there are Action 
block and Communication block in the Actor architecture. 
Passing the output from the FC layer and from the Multi-head 
attention layer [13] which contains features of neighbors, 
Action block outputs action distribution. Meanwhile, 
inputting output from FC layer to Communication block 
generates outcome message vector of an agent. The critic 
architecture, same with basic PPO, outputs scalar value 
function. Finally, to avoid deadlock, they trained and used the 
Scheduler model which estimates the probability the train will 
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reach its target successfully. Good policy is learned by training 
the scheduler iteratively with trained and fixed PPO agent. 

 
  • Second Place: Ai-team-flatland(Team) 

     Total reward: 181.497 
     Done rate: 0.881 

 
Unlike the above first-place team, this team’s main focus is 

on representing the environment, rather than the RL algorithm 
itself. They represent the environment with a simple cell graph 
which represents only the intersection node and edge 
representing connections. With the graph representation of the 
environment, off-policy and on-policy baseline RL models (In 
section 3) have experimented. To input the observation vector, 
the priority, and the conflict-info features are mainly used. In 
the learning process, they designed the reward in detail. (if 
agent is in the target: +10, deadlock: -10, not following 
priority: -5, missing the path: -3, stopping on switch: -3, 
stopping: -1, regular step: -0.5, avoided deadlock: -0.35). A 
notable fact is that they achieved a higher done rate than the 
first-place team. 

 
Participants were usually unable to focus on all environment 

elements and instead focused on designing the algorithm 
model or environment itself. However, it was generally agreed 
that the efficiency and computational speed of the 
environment should be upgraded (e.g., 2019 first-place winner 
commented that converting Python code to C++ can be 
considered). To optimize in more large-scale maps and general 
applicability, using graphical methods including GNN [21] 
with RL approaches are expected to be the key methods for 
the 2021 challenge and the next. 
 
5. CONCLUSION 

In this paper, we introduced the railway simulation 
environment called Flatland and the Flatland challenge. 
Various methodologies from Operation Research (OR) and 
Reinforcement Learning (RL) are introduced and discussed. 
The analysis of the winners’ methods will help guide 
researchers to the solutions for Multi-Agent Path Finding 
(MAPF) and Vehicle Rescheduling Problem (VRSP) and can 
be helpful to (potential) participants of the challenge. 
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