CycleGAN을 이용한 인터랙티브 웹페이지

Interactive Web using CycleGAN

  • Kim, Jiwon (Seoul National University of Science and Technology) ;
  • Jung, Haejung (Seoul National University of Science and Technology) ;
  • Kim, Dongho (Seoul National University of Science and Technology)
  • 발행 : 2021.11.26

초록

최근에 딥러닝 기술인 GAN (Generative Adversarial Networks) 연구는 Image-to-Image translation 분야에서 활발하게 이뤄지고 있다. 이러한 기술을 바탕으로 사용자에게 편의와 재미를 제공하는 서비스가 애플리케이션 및 웹사이트의 형태로 개발되고 있다. 이에 본 논문은 CycleGAN 모델을 사용하여 이미지를 변환하고, 이를 인터랙티브 웹페이지를 통해 사용자와 실시간으로 상호작용하며 결과 이미지를 제공할 수 있는 방법을 연구하였다. 모델을 구현하기 위해 Tensorflow 및 Keras를 사용하였고, Django와 HTML5, CSS, JavaScript를 사용하여 웹사이트를 제작하였다.

키워드

과제정보

이 논문은 2021년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임 (No.2020-0-00994,이용환경을 반영하는 자율적 VR·AR 콘텐츠 생성 기술개발)