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Abstract: Noise which is unwanted sound is a serious pollutant that can affect human health, as well as 
the working and living environment if exposed to humans. However, current noise management on the 
construction project is generally conducted after the noise exceeds the regulation standard, which 
increases the conflicts with inhabitants near the construction site and threats to the safety and 
productivity of construction workers. To overcome the limitations of the current noise 
management methods, the activities of construction equipment which is the main source of 
construction noise need to be managed throughout the construction period in real-time. Therefore, 
this paper proposed a framework for automatically detecting noise sources in construction sites 
in real-time based on convolutional neural networks (CNNs) according to the following four steps: 
(i) Step 1: Definition of the noise sources; (ii) Step 2: Data preparation; (iii) Step 3: Noise source 
classification using the audio CNN; and (iv) Step 4: Noise source detection using the visual CNN. The 
short-time Fourier transform (STFT) and temporal image processing are used to contain temporal 
features of the audio and visual data. In addition, the AlexNet and You Only Look Once v3 
(YOLOv3) algorithms have been adopted to classify and detect the noise sources in real-time. As a 
result, the proposed framework is expected to immediately find construction activities as current noise 
sources on the video of the construction site. The proposed framework could be helpful for 
environmental construction managers to efficiently identify and control the noise by automatically 
detecting the noise sources among many activities carried out by various types of construction 
equipment. Thereby, not only conflicts between inhabitants and construction companies caused by 
construction noise can be prevented, but also the noise-related health risks and productivity 
degradation for construction workers and inhabitants near the construction site can be minimized. 
Key words: Construction noise, Real-time automated detection, Convolutional neural network, Short-
time Fourier transform, Temporal image processing 
1. INTRODUCTION

Environment pollutants (e.g., greenhouse gas, noise, odor, waste) from industrial activities cause
critical social problems that undermine the quality of life and environmental rights of humans [1, 2]. 
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Among the various environmental pollutants, especially, noise (i.e., unwanted, unpleasant, and loud 
sounds) generated from construction sites can directly and immediately affect the people around the 
noise source [3, 4]. Moreover, as construction projects have become more complex and larger, the 
construction noise from various types of heavy construction equipment throughout the construction 
period (i.e., several months to years) can damage health of construction workers and inhabitants near 
the construction site along with their working and living environment [5-7]. Despite the strengthened 
regulations and management guidelines on noise emissions to address these noise issues [8-10], 
construction noise has been provoking a stream of many complaints and conflicts between inhabitants 
and construction companies that cause delay in the construction project [11, 12]. In addition, 
construction noise causes health problems such as hearing loss, and productivity degradation through 
decreased concentration of construction workers located directly next to the noise source [7, 13]. 
Consequently, to minimize the deterioration in quality of life and potential conflicts arising from 
inhabitants, and to ensure the productivity and safety of the construction workers or labors, construction 
managers need to manage the level of construction noise as much as possible. However, until now, 
construction noise in South Korea has been managed and monitored only for a short period of time (e.g., 
three times of five-minute measurements) after the noise complaints occur. Therefore, during the rest 
period of time, the unmanaged construction noise can constantly affect to construction workers and 
inhabitants. Due to this poor management of construction noise, inhabitants near construction sites as 
well as construction workers, are still exposed to unnecessary and unpleasant noise during the entire 
construction period. To overcome the limitations of the current noise management methods, the level of 
construction noise and the activities of noise generating construction equipment, which is the main 
source of the construction noise, need to be monitored and managed throughout the construction period 
in real-time. 

With the necessity of managing both construction noise and equipment in real-time, several previous 
studies proposed different methods for identifying construction equipment or noise using various deep 
learning methods based on the following two data format: (i) audio data; and (ii) visual data. First, some 
studies classified the activities of construction equipment and analyzed the effects of noise on humans 
by analyzing the characteristics of the audio data so as to recognize construction equipment or assess 
construction noise. Cheng et al. [14] converted the audio data into a time-frequency representation using 
a short-time Fourier transform (STFT), then classified the activity of each construction equipment using 
an support vector machine (SVM). Abdoli et al. [15] classified the environmental sounds (e.g., drilling, 
engine idling, jack-hammers) based on the audio data using a 1-dimensional convolutional neural 
network (CNN) without data preprocessing. Lee et al. [16] and Ballesteros et al. [17] analyzed the 
characteristics of construction noise (i.e., sound pressure level and frequency) according to the type of 
construction stage and equipment, and assessed the impact of construction noise (such as annoyance 
and stress) on construction workers or general public. Second, several studies identified the types and 
activities of construction equipment by analyzing visual data to measure and monitor the performance 
of construction equipment. Kim et al. [18] proposed a framework to identify the interactive operations 
between excavators and dump trucks based on a comprehensive visual dataset of activities by using a 
tracking-learning-detection method. Fang et al. [19] extracted feature maps from visual data and 
improved the accuracy of identifying construction equipment and workers in real-time using improved 
faster region-based CNN (Faster R-CNN). Golparvar-Fard et al. [20] collected spatio-temporal visual 
features from the visual data of a single piece of construction equipment, then identified the activity 
through the distributions of the spatio-temporal features using an SVM. 

Although these previous studies identified the types and activities of construction equipment by 
analyzing audio or video data using deep learning methods, following limitations still remain. First, 
previous studies successfully analyzed the characteristics and effects of construction noise on 
construction equipment only using the audio data, but they did not classify or manage construction noise 
in real-time. Second, previous studies identified the types or activities of the construction equipment 
only using the visual data, but there are limitations in identifying multiple noises generating construction 
equipment in real-time on a large and complex construction site. In these studies, some of them were 
failed to identify the activity of construction equipment because they analyzed 2-dimensional data (i.e., 
single image) which is non-temporal. Others successfully identified the activity of construction 
equipment, however, they still had a limitation in identifying multiple construction equipment at the 
same time. Third, since previous studies only analyzed either the audio or video data through deep 
learning in order to judge the types and activities of the construction equipment, it was hard to judge the 
noise generating construction equipment practically at the actual construction sites. That is, when only 
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audio data is analyzed, the type and activity of the equipment can be identified, but the actual location 
of the equipment remains unknown. On the other hand, when only visual data is analyzed, the type, 
activity, and location of the equipment can be identified, but the magnitude of the noise remains 
unknown. Consequently, to manage the construction noise practically and effectively in real-time, it is 
necessary to simultaneously analyze the temporal audio and visual data to detect the multiple noises 
generating construction equipment at a construction site. Therefore, this study aimed to propose a 
framework for automatically and systematically detecting the noise source on the whole construction 
site in real-time by classifying the noise source based on the temporal audio data and detecting it based 
on the visual data through CNN-based deep learning. 

2. METHODS AND MATERIALS 

In this study, the proposed framework for real-time automated detection of construction noise sources 
consists of four steps (refer to Fig. 1). First, the noise sources in the construction site should be defined 
according to the types of equipment and their activities. Second, the audio and visual data on the 
construction equipment should be preprocessed so as to be input of the audio CNN and the visual CNN. 
Third, the construction noise should be automatically classified based on the audio input data by feeding 
them into the audio CNN in order to determine the current noise source in the construction site. Fourth, 
the construction equipment and activities which are determined to be noise sources should be detected 
on the video of the construction site by feeding visual input data into the visual CNN. As a result, by 
utilizing the video of the construction site, the proposed framework can make it possible to automatically 
detect where the construction noise is generated in real-time. Details of each step are described below. 

 

 

Figure 1. The proposed framework for a real-time automated detection of construction noise sources 

2.1. Step 1. Definition of the noise sources 

On construction sites, various types of heavy construction equipment generate noises which are 
different in amplitude, frequency, and wavelength while performing a particular activity [16]. Therefore, 
this study defined noise sources according to the types of heavy construction equipment and their 
activities. The types of heavy construction equipment can be defined in terms of the noise-generating 
construction equipment regulated under the Noise and Vibration Control Act of South Korea [21]: 
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excavator, roller, loader, breaker, earth auger, pile driver, and dump truck. In addition, the activities of 
each type of construction equipment can be defined by taking into account the different characteristics 
of the noises of each activity: turned off, traveling, and working. However, since a roller and dump truck 
among the defined types of heavy construction equipment, travel and work at the same time, their 
working activity is considered as a traveling activity. As a result, the noise sources in this study are 
defined by seven types of construction equipment with their activities, as shown in Table 1. 

 

Table 1. The defined noise sources 

Types Activities 

Turned off Traveling Working 

Excavator ○ ○ ○ 

Roller ○ ○ - 

Loader ○ ○ ○ 

Breaker ○ ○ ○ 

Earth auger ○ ○ ○ 

Pile driver ○ ○ ○ 

Dump truck ○ ○ - 

 

2.2. Step 2. Data preparation 

In order to extract the feature of the noise and movements of the noise sources, the audio and visual 
data on the noise sources should be collected and preprocessed. The audio and visual data on the noise 
sources can be collected from audio and video recordings on the construction site. When the noise is 
generated from the construction equipment, the audio signal of the generated noise changes over time 
according to the pattern of the activity. Moreover, the activity of the construction equipment cannot be 
detected when using a single image, as the defined types of construction equipment generate noises with 
movements or actions that can cause changes in each sequence of the video. Therefore, to include the 
information of those changes over time, each segmented frame from the audio and video recordings 
with the proper length of time should be preprocessed into 3-dimensional data including width, height, 
and color channels to then serve as input data for the CNNs. Towards this end, the proposed framework 
transforms the collected data using the STFT for the audio data and temporal image processing for the 
visual data. 

Firstly, to extract the feature from the audio data, the audio signal should be converted into the form 
of a time-frequency domain using the STFT. The discrete Fourier transform (DFT), which is usually 
used for spectral analysis of the signal, can only extract the frequency domain information on the audio 
signals. On the other hand, the STFT, which is a sequence of the DFTs of the divided signals with a 
certain window size in time, can extract the time-frequency domain information that makes it possible 
to track the changes of the frequency properties of the audio signal over time. To perform the STFT on 
the audio data, first, the collected raw audio data should be sampled to change the continuous signal into 
discrete frames. After the sampling of the raw audio data, the discrete frames should be segmented to 
make the frameset of which to calculate the STFT. The STFT of the frameset can be obtained by dividing 
the frameset with the window size and then multiplying each divided frames by a window function 
(refer to Eq. (1)). As a result, the raw audio data can be transformed into 3-dimensional representation 
to be the input data for the audio CNN. As shown in Fig. 2, the audio input data indicates the amplitude 
of a certain frequency at a certain time that can be shown as the intensity of the color in the image. For 
the training dataset, the transformed frameset should be labeled with the defined noise sources. 

 
𝑋𝑋(𝑘𝑘, 𝑡𝑡) = ∑ 𝑤𝑤(𝑚𝑚)𝑥𝑥(𝑚𝑚 + 𝑍𝑍𝑍𝑍)𝑒𝑒−2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋/𝑀𝑀𝑀𝑀−1

𝑚𝑚=0                                                               (1) 

where X(k,t) is the value at frequency k and time t, m is the signal frame, M is the window size, w(m) is 
the window function, x(m+Zt) is the original divided signal, and Z is the parameter of a window stride. 
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Figure 2. An image example for the STFT of the construction equipment 

 

Secondly, the video data should be transformed to extract the feature. Video can be described as a set 
of image frames. Accordingly, actions in the video can be regarded as the temporal change of the color 
of the pixels. Therefore, in order to consider these changes in the input data for the visual CNN, the 
temporal image processing that concatenates multiple image frames into a single set of image frames is 
used for generating the visual data. The temporal image processing can start by sampling the image 
frames from the video. In addition, to recognize the actions from the sampled image frames, they need 
to contain enough length of time from the first to the last image frames while reflecting definite changes 
in pixels. If too many image frames are sampled, however, the CNN cannot operate in real-time due to 
excessive computational demands. Accordingly, after sampling the image frames, a subset of the 
sampled image frames should be extracted at particular frame intervals. Then, the extracted image 
frames from the subset should be concatenated into a single set of input data for the visual CNN. 

For example, if the subset frames are extracted at eight intervals from 25 frames of the video whose 
width and height is 416×416, the visual input data will be the concatenated four frames (i.e., 1st, 9th, 17th, 
and 25th) with the size of 416×416×12 (i.e., width×height×(RGB channels×four frames)). As a result, 
the visual input data can reflect enough length of time during the activity of the construction equipment 
with less amount of data. Just like the audio input data, the visual input data can be also transformed 
into 3-dimensional data and each transformed data should be labeled with the defined noise sources for 
the training dataset. 

2.3. Step 3. Noise source classification using the audio CNN 

As CNNs have been proven to be effective in image classification, there have been increasing 
attempts to analyze audio signals using CNN algorithms (i.e., AlexNet, Inception, VGG, and ResNet) 
and the results were promising [22]. In order to determine what kind of activity of the construction 
equipment was the source of the current noise, this study proposed the audio CNN as a real-time 
automated classification algorithm by using the AlexNet which significantly outperformed the other 
prior algorithms.  

In this study, the AlexNet which consists of five convolutional layers for feature extraction, three 
fully connected layers for classification, and three max-pooling layers for subsampling is applied to the 
audio CNN. To prevent the gradient vanishing which interrupts the training of the network, the ReLU 
(Rectified Linear Unit) is used as the activation function of overall neurons. On the other hand, the 
output of the last fully connected layer can be calculated using the softmax function as the activation 
function to represent a probabilistic distribution over the class labels. Since there are seven defined noise 
sources in this study, the output neurons of the last fully connected layer should be modified to seven 
for the audio CNN. 

In order to train the audio CNN on the target audio data, transfer learning which is fine-tuning based 
on pre-trained AlexNet should be performed. The training process can be done by adjusting the weights 
of neurons using the backpropagation algorithm that is widely used for training the neural networks. As 
a result, by feeding the input variables with the size of 224×224×3 into the network, the probability 
score of each noise source can be calculated as an output. By using this audio CNN, any noise source 
whose score is above the certain criteria can be suggested as the current noise source in the construction 
site. 

2.4. Step 4. Noise source detection using the visual CNN 
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Based on the results of the noise classification in Step 3, the suggested noise sources should be 
detected on the video of the construction site. Since many activities of different types of construction 
equipment are operated at the same time on construction sites, it should be possible to detect multiple 
activities on a single image in real-time. Therefore, object detection algorithms that can automatically 
detect multiple objects in real-time are implemented for developing the visual CNN. In this study, an 
object detector algorithm called You Only Look Once v3 (YOLOv3), which is well-balanced in terms 
of speed and accuracy, is modified to be applied to the visual CNN (refer to Fig. 3) [23-25]. The 
YOLOv3 that uses the Darknet-53 which consists of 53 convolutional layers predicts the bounding 
boxes on the objects and the class confidence of the objects to localize and classify the objects. Further 
information about the architecture of the YOLOv3 can be found in [26]. By using multiple convolutional 
and residual layers, YOLOv3 can divide the input image with the size of  416×416 into grid cells with 
3 different scales (i.e., 13×13, 26×26, and 52×52) to consider the various size of the object. Each grid 
cell has prediction results encoding 3 bounding boxes with different scales, objectness confidence 
representing the probability of the object existence on the grid cell, and class confidence representing 
the probability of belonging to each class. As a result, the dimension of the output for each grid can be 
represented as Eq. (2).  
 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑆𝑆 × 𝑆𝑆 × �3 × (4 + 1 + 𝐶𝐶)�                                                              (2) 

where S is the width and height of the grid, 3 is the number of bounding boxes, 4 is the properties of the 
bounding box which are bounding box coordinate, width, and height, 1 is the objectness confidence, 
and C is the class confidence for each class. 

Since the YOLOv3 is for object detection rather than action detection, it needs to be modified to 
detect the activities of the construction equipment from the pre-processed visual data. Therefore, an 
early fusion which combines the data immediately on the first convolutional layer is applied to detect 
noise sources while preventing excessive calculations for the visual CNN so as to operate in real-time 
[27]. As such, the input dimension of the visual CNN should be modified from the YOLOv3 so as to 
coordinate with the dimension of the visual input data. 

Just like the noise classification algorithm (i.e., audio CNN), transfer learning should be performed 
for the visual CNN based on the pre-trained YOLOv3. As a result, the construction equipment of the 
activity determined to be the noise source by the audio CNN can be localized on the real-time video as 
an output of the visual CNN. 

 

 

Figure 3. The process flow of the visual CNN 

3. CONCLUSION 

This study proposed a framework for an automated detection system of noise source on the whole 
construction site in real-time based on temporal audio and visual data using convolutional neural 
networks (CNNs). The proposed framework used the short-time Fourier transform (STFT) and temporal 
image processing to contain temporal features of the audio and visual data. In addition, the audio CNN 
and visual CNN were proposed with modifications of the AlexNet and the YOLOv3 in order to classify 
and detect the noise sources in real-time. The proposed framework could be helpful for environmental 
construction managers to efficiently identify the noise by automatically detecting the noise sources that 
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are generally complicated in the construction site due to many activities of various types of construction 
equipment. Furthermore, they can immediately control the noise level by providing information about 
the noise source in real-time that is essential to constantly and effectively reduce noise under a certain 
level. Thereby, complaints and conflicts between inhabitants and a construction company caused by 
construction noise can be effectively prevented. Moreover, noise-related health risks and productivity 
degradation of construction workers and inhabitants near the construction site can be minimized. With 
such contributions, the proposed framework could be applied to construction sites as a management 
system for securing the safety and productivity of the construction project. 

However, this study only proposed a framework for the automated real-time detection system of noise 
sources in the construction site. Furthermore, some noise sources show various actions during a single 
working activity, such as digging and rotating for the excavator. Therefore, to effectively apply and 
validate the proposed framework, more detailed classes should be considered for developing the 
detection system along with the experimental study of the proposed framework with sufficient data. 
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