BERT Sparse: Keyword-based Document Retrieval using BERT in Real time

BERT Sparse: BERT를 활용한 키워드 기반 실시간 문서 검색

  • 김영민 (LG CNS AI빅데이터연구소 기술팀) ;
  • 임승영 (LG CNS AI빅데이터연구소 기술팀) ;
  • 유인국 (LG CNS AI빅데이터연구소 기술팀) ;
  • 박소윤 (LG CNS AI빅데이터연구소 기술팀)
  • Published : 2020.10.14

Abstract

문서 검색은 오래 연구되어 온 자연어 처리의 중요한 분야 중 하나이다. 기존의 키워드 기반 검색 알고리즘 중 하나인 BM25는 성능에 명확한 한계가 있고, 딥러닝을 활용한 의미 기반 검색 알고리즘의 경우 문서가 압축되어 벡터로 변환되는 과정에서 정보의 손실이 생기는 문제가 있다. 이에 우리는 BERT Sparse라는 새로운 문서 검색 모델을 제안한다. BERT Sparse는 쿼리에 포함된 키워드를 활용하여 문서를 매칭하지만, 문서를 인코딩할 때는 BERT를 활용하여 쿼리의 문맥과 의미까지 반영할 수 있도록 고안하여, 기존 키워드 기반 검색 알고리즘의 한계를 극복하고자 하였다. BERT Sparse의 검색 속도는 BM25와 같은 키워드 기반 모델과 유사하여 실시간 서비스가 가능한 수준이며, 성능은 Recall@5 기준 93.87%로, BM25 알고리즘 검색 성능 대비 19% 뛰어나다. 최종적으로 BERT Sparse를 MRC 모델과 결합하여 open domain QA환경에서도 F1 score 81.87%를 얻었다.

Keywords