A Study on Methodology on Building NLI Benchmark Dataset in korean

한국어 추론 벤치마크 데이터 구축을 위한 방법론 연구

  • 한지윤 (연세대학교 언어정보학 협동과정) ;
  • 김한샘 (연세대학교 언어정보학 협동과정)
  • Published : 2020.10.14

Abstract

자연어 추론 모델은 전제와 가설 사이의 의미 관계를 함의와 모순, 중립 세 가지로 판별한다. 영어에서는 RTE(recognizing textual entailment) 데이터셋과 다양한 NLI(Natural Language Inference) 데이터셋이 이러한 모델을 개발하고 평가하기 위한 벤치마크로 공개되어 있다. 본 연구는 국외의 텍스트 추론 데이터 주석 가이드라인 및 함의 데이터를 언어학적으로 분석한 결과와 함의 및 모순 관계에 대한 의미론적 연구의 토대 위에서 한국어 자연어 추론 벤치마크 데이터 구축 방법론을 탐구한다. 함의 및 모순 관계를 주석하기 위하여 각각의 의미 관계와 관련된 언어 현상을 정의하고 가설을 생성하는 방안에 대하여 제시하며 이를 바탕으로 실제 구축될 데이터의 형식과 주석 프로세스에 대해서도 논의한다.

Keywords

Acknowledgement

본 논문은 과학기술정보통신부 및 정보통신산업진흥원의 '고성능 컴퓨팅 지원' 사업으로부터 지원받아 수행하였음 본 연구는 2020년 연세대학교 대학원 연구장학금 지원에 의한 것임