DOI QR코드

DOI QR Code

DG-DARTS: Operation Dropping Grouped by Gradient Differentiable Neural Architecture Search

그룹단위 후보 연산 선별을 사용한 자동화된 최적 신경망 구조 탐색: 후보 연산의 gradient 를 기반으로

  • Park, SeongJin (Department of Computer Engineering, Hongik University) ;
  • Song, Ha Yoon (Department of Computer Engineering, Hongik University)
  • 박성진 (홍익대학교 컴퓨터공학과) ;
  • 송하윤 (홍익대학교 컴퓨터공학과)
  • Published : 2020.11.05

Abstract

gradient decent 를 기반으로 한 Differentiable architecture search(DARTS)는 한 번의 Architecture Search 로 모든 후보 연산 중 가장 가중치가 높은 연산 하나를 선택한다. 이 때 비슷한 종류의 연산이 가중치를 나누어 갖는 "표의 분산"이 나타나, 성능이 더 좋은 연산이 선택되지 못하는 상황이 발생한다. 본 연구에서는 이러한 상황을 막기위해 Architecture Parameter 가중치의 gradient 를 기반으로 연산들을 클러스터링 하여 그룹화 한다. 그 후 그룹별로 가중치를 합산하여 높은 가중치를 갖는 그룹만을 사용하여 한 번 더 Architecture Search 를 진행한다. 각각의 Architecture Search 는 DARTS 의 절반 epoch 만큼 이루어지며, 총 epoch 이 같으나 두번째의 Architecture Search 는 선별된 연산 그룹을 사용하므로 DARTS 에 비해 더 적은 Search Cost 가 요구된다. "표의 분산"문제를 해결하고, 2 번으로 나뉜 Architecture Search 에 따라 CIFAR 10 데이터 셋에 대해 2.46%의 에러와 0.16 GPU-days 의 탐색시간을 얻을 수 있다.

Keywords

Acknowledgement

이 연구는 정부(교육과학기술부)의 재원으로 한국연구재단의 지원을 받아 수행됨(NRF-2019R1F1A1056123).