Acknowledgement
이 논문은 2020년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임. (No. 2020-0-01336 인공지능대학원 지원(울산과학기술원), No. 2020-0-00537 5G 기반 저지연 디바이스-엣지클라우드 인터랙션 기술 개발)
DOI QR Code
본 논문에서는 사람의 손에 관한 개별적으로 분리되어 진행되고 있는 손 위치 추정, 손 자세 추정, 손 동작 인식 작업을 통합하는 Faster-RCNN기반의 프레임워크를 제안하였다. 제안된 프레임워크에서는 RGB 동영상을 입력으로 하여, 먼저 손 위치에 대한 박스를 생성하고, 생성된 박스 정보를 기반으로 손 자세와 동작을 인식하도록 한다. 손 위치, 손 자세, 손 동작에 대한 정답을 동시에 모두 가지는 데이터셋이 존재하지 않기 때문에 Egohands, FPHA 데이터를 동시에 효과적으로 사용하는 방안을 제안하였으며 제안된 프레임워크를 FPHA데이터에 평가하였다., 손 위치 추정 정확도는 mAP 90.3을 기록했고, 손 동작 인식은 FPHA의 정답을 사용한 정확도에 근접한 70.6%를 기록하였다.
이 논문은 2020년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임. (No. 2020-0-01336 인공지능대학원 지원(울산과학기술원), No. 2020-0-00537 5G 기반 저지연 디바이스-엣지클라우드 인터랙션 기술 개발)